Content identification

Yacov Yacobi Microsoft Research Keynote at 8th ACM DRM Workshop October 27, 2008 Alexandria, VA, USA

Contour

General

- 1. Physical Vs. digital goods,
- 2. Classic DRM
 - a. Before the fact,
 - b. After the fact,
 - (i) Fingerprints,
 - (ii) Traitor tracing,
- 3. New DRM.

Today's talk

- 1. Speculate about new DRM,
 - 2. Economics
 - a. Piracy
 - b. Counterfeiting

Damage from Counterfeiting

- World Economic Forum: Damage from counterfeiting went from \$430b in 2004 to \$3t in 2007.
- Physical counterfeiting (medicine, aviation parts, etc.). Solution: *Don Bauder & Gus Simmons* of Sandia National Labs, SALT agreement, 70's.

by a trusted authority.

How good can it possibly get?

(new DRM)

Yacov Yacobi, Microsoft Research

DRM for web hosting ("the new DRM"):

Web-host shares ad-revenues w/producer. *Identify the true producer*.

Comparison

• The <u>new DRM</u> problem is easier to solve than the classic one. It enjoys numerous *systemic* advantages.

• In addition, replacing watermark technology with media-*hashing* has *operational*, *computational* complexity, and *robustness* advantages.

Media hashing

• Objects $Ci \cong Cj \rightarrow h(Ci) = h(Cj)$.

[Ref.: M.H. Jakubowski; M. K. Mihcak; R. Venkatesan]

- Creator *R* created object *c*.
- A <u>trusted</u> party *TP* issues a certificate
 cert=SIGN_{TP}(h(c),R), if it hasn't seen *h(c)* before.

A possible new DRM system

Fig. 1: Ad-based revenue generation using media hashing to control fraud.

Systemic advantages of new DRM

- End user is not the enemy;
- Attacker does not know the secret key, and cannot even experiment with the decoder as a black box;
- The assumption that end-user does not modify her player is realistic (since she is not a side in this struggle).

Advantages of hashing over marking

- Operational: Protects the *past*.
- Complexity & Robustness: By def. more efficient & more robust (∈ watermarking),
- Example: current image-hash tolerate ±20⁰ rotations. For images, 360/(2*20)=9 trials are enough. For video, after ±20⁰ rotations it is not valuable, so 1 trial.

How good is good enough?

(classic DRM)

REFERENCES

• Banerjee, D.S., 2003, 2006 ("piracy.."),

• YY & Gideon Yaniv in this proceedings.

Counterfeiting Vs. Piracy

• CF looks like original, costs like original, and counterfeiter competes against legal producer in the same market.

Setting

• **Def.:** *q* = probability to correctly trace (eg, using sting ops), successfully prosecute, and penalize a counterfeiter.

• **Q:** What is the payoff of improving *q*?

Over simplifications

• Counterfeiter mimic original w/out costs,

• Consumers pay full price for counterfeits,

• Everybody is economically rational.

Reasonable Assumptions

- 1. Once traced & successfully prosecuted there is a fixed proportion $1/\gamma$ between crime and punishment.
- 2. Audit events are independent,
- 3. Probability of false positives is negligible (adjust threshold accordingly).

Notations

- *x*=# illegal copies,
- q=Pr[detection after a single illegal copy],
- $q = \alpha \beta$,
- $\pi(x) = \Pr[\det. \text{ after } x \text{ copies}] = 1 (1 q)^x$,
- *p*=price of a copy,
- F=\$ punishment,

- $\gamma = F/xp = punish/crime$,
- P(x)= gain of the CF, = $(1-\pi(x))px$ - $\pi(x)F$
- *x** = optimal CF production,
- Lambert : $L(z)e^{L(z)} = z$,
- $\lambda(\gamma) = L(e \cdot \frac{\gamma}{1+\gamma}) 1.$

More precisely

Henceforth we ignore boundary conditions, and some other details, assuming $x^* < D(p)/n$, and q > 0.

The Counterfeiter

Theorem 1:

(i)
$$x^* = \lambda(\gamma) / \ln(1-q) \approx -\lambda(\gamma) / q$$
,
(ii) $P(x^*) > 0$,
(iii) $\pi(x^*) = 1 - e^{\lambda(\gamma)}$.

i.e. $\pi(x^*)$ is independent of q and p. It depends only on γ . Corollary : $\pi(x_w^*) = \pi(x_o^*)$.

The economics of the protection

- n=# counterfeiters.
- Subscripts *w,o* denote parameter values *w*ith and with*o*ut improvement (technological, or audit rate),
- For $i \in \{w, o\}$ R_i = revenues of legal producer.
- $P_2 = R_w R_o$ = payoff of legal producer due to improvement.

Payoff of the legal producer

 $R_{w} = (D(p) - x_{w}^{*})p; \quad R_{o} = (D(p) - x_{o}^{*})p,$ $P_{2} = R_{w} - R_{o},$

For a single counterfeiter:

$$P_{2} = \lambda(\gamma) p(\frac{1}{\ln(1-q_{o})} - \frac{1}{\ln(1-q_{w})}),$$

For *n* counterfeiters:

$$P_{2} = \lambda(\gamma) n p(\frac{1}{\ln(1-q_{o})} - \frac{1}{\ln(1-q_{w})}).$$

Success factor
$$k = q_w / q_o$$
.
Yacov Yacobi, Microsoft Research

Freeze γ variable k

Freeze k variable γ

Max # counterfeiters

n counterfeiters crowd the market; each gets $x=D(p)/n < x^*$

Claim:
$$n_{\text{max}} = \frac{D(p)\ln(1-q)}{\ln(\frac{\gamma}{1+\gamma})}$$

Proof : $(1 - \pi (D/n))pD/n - \pi (D/n)F = 0$, $F = \gamma pD/n$.

APPENDIX

 $-\ln(1-q)$

$$\lambda(\gamma) = \text{LambertW}(e * \gamma/(1 + \gamma)) - 1$$

