
Published in H. Jin and G. Heileman, Eds, 9th ACM Workshop in Digital Rights Management (ACM-DRM 2009), pp. 11–16, ACM Press, 2009.

A Simple Construction for Public-Key Encryption with
Revocable Anonymity: The Honest-Sender Case

(Extended Abstract)

Davide Alessio
Université de Rennes 1, IRMAR &

Thomson R&D, Security Competence Center
Cesson-Sévigné, France

davide.alessio@thomson.net

Marc Joye
Thomson R&D, Security Competence Center

Cesson-Sévigné, France
marc.joye@thomson.net

ABSTRACT
This paper presents a simple and generic transformation
that adds traceability to an anonymous encryption scheme.
We focus on the case of honest senders, which finds applica-
tions in many real-life scenarios. Advantageously, our trans-
formation can be applied to already deployed public-key in-
frastructures. Two concrete implementations are provided.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; E.3 [Data]: Data Encryption—
Public key cryptosystems

General Terms
Security, Design

Keywords
Public-key encryption, key-privacy, anonymity

1. INTRODUCTION
In numerous scenarios, the recipient’s identity in a trans-

mission needs to be kept private. This allows users to main-
tain some privacy. Protecting communication content may
be not enough, as already observed in a couple of papers
(e.g., [1, 2, 13]). For example, by analyzing the traffic be-
tween an antenna and a mobile device, one can recover some
information about [at least] user’s position and some details
about the use of her mobile device. This information leaks
easily during all day: it is a common habit, indeed, to use
a mobile phone every day and to keep it (almost) always
switched on. A similar problem exists in the context of elec-
tronic commerce. If no anonymity is provided, users’ pref-
erences can be known. The knowledge of this information
enables profiling users and sending them targeted advertise-
ments or selling profiles to other commercial entities. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-779-0/09/11 ...$10.00.

should be conceivable that buyers can make their choices
and shop on Internet without risking to be profiled. On the
other hand, it is understandable that, in some situations,
there may be a need to be able to revoke the anonymity; for
example in the case of a legal dispute —while keeping the
content private. This paper provides such a solution, offer-
ing a trade-off between the needs of the different involved
parties.
We propose constructions for encryption schemes with re-

vocable anonymity. As a result, we get schemes keeping pri-
vate the recipient’s identity in a transmission, but offering
to some trusted party the possibility to discover it.
Back to the wireless communication case, we can imagine

antennas broadcasting messages without leaking receivers’
identifiers to mobile devices and in case of network misuse,
find out the user identifier and revoke her. The primitive
can be deployed on a shared network (or storage) system
where all data are encrypted. If someone overuses the re-
sources quota, the system administrator can easily individ-
uate that user and take appropriate actions (as a warning,
reduce/revoke rights, . . .).

Related work.
Formal notions of anonymity in the public-key setting ap-

pear in [2]. There should be no way for an adversary to
distinguish between a message sent to a given recipient and
one addressed to a random one. In [12], Pointcheval and
Izabachène analyze different anonymity levels for identity-
based encryption schemes ([14]).
Concurrent to our work, Kiayias et al. introduce and

model in [13] the concept of group encryption. This is the
analogue for encryption of group signatures [7]. Group en-
cryption allows one to conceal the identity of the recipient of
a given ciphertext among a set of legitimate receivers. How-
ever, in case of misuse, some authority (the group manager)
is capable of recovering the recipient’s identity. Further-
more, in addition to security and privacy properties, group
encryption offers verifiability: a sender can convince a veri-
fier that the formed ciphertext can be decrypted by a group
member.

Our contribution.
Key privacy in public-key encryption assumes a “homoge-

neous” environment. Indeed, if users make use of different
cryptosystems or of the same cryptosystem but with keys of
different lengths, anonymity is likely to be lost. The notion

of anonymity is therefore is restricted to users sharing the
same cryptosystem and common parameters. This implic-
itly defines a group.
In this paper, we relax the requirements for group en-

cryption. In the particular context of media broadcasting or
wireless communications, we face a different situation where
the sender (the broadcaster or the wireless emitter) can be
trusted. This relaxation is justified by the fact that, in prac-
tical uses of the infrastructure, the sender has no interest in
cheating because of business and reputation aspects. More-
over, it is very unlikely that an attacker can impersonate the
sender, due to the particular material infrastructure needed
(expensive, powerful, . . .). Such an attacker should, indeed,
mute the licit signals and substitute them with illicit ones,
keeping all existing communications alive and faking the at-
tacked ones. For similar reasons, we can also suppose that
there are no collusions between senders and recipients. We
refer to this setting as the honest-sender case.

The rest of this paper is organized as follows. In the next
section, we introduce some background on public-key en-
cryption. In Section 3, we define the notion of revocable
anonymity. Section 4 is the core of our paper. We de-
scribe a simple and generic transformation to get a public-
key encryption scheme with revocable anonymity. Finally,
we present applications of our transformation in Section 5.

Acknowledgments.
We are grateful to the anonymous referees and to Alain

Durand, Mohamed Karroumi and Nicolas Prigent for useful
comments.

2. PRELIMINARIES
In this section, we review classical notions for public-key

encryption, dealing both with data-privacy and key-privacy.
We also introduce some useful notation.

Public-key encryption scheme.
In order to better capture the property that users may

share some common parameters in a homogeneous environ-
ment, the key generation algorithm is divided in two sub-
algorithms: the common-key generation algorithm and the
key generation algorithm.
Following the syntax of [2], we define a public-key encryp-

tion scheme is a tuple of four algorithms (CKeyGen,KeyGen,
Enc,Dec):

Common-key generation The common-key generation al-
gorithm CKeyGen takes on input some security param-
eter λ and outputs some common key I R← CKeyGen(λ).

Key generation The key generation algorithm KeyGen is
a randomized algorithm that takes on input I and re-
turns a matching pair of public key and secret key for
some user: (upk, usk) R← KeyGen(I).

Encryption Let M denote the message space. The en-
cryption algorithm Enc is a randomized algorithm that
takes on input a public key upk and a plaintext m ∈
M, and returns a ciphertext c. We write c← Encupk(m).

Decryption The decryption algorithm Dec takes on input
secret key usk (matching upk) and ciphertext c and re-

turns the corresponding plaintext m or a special sym-
bol ⊥ indicating that the ciphertext is invalid. We
write m ← Decusk(c) if c is a valid ciphertext and
⊥ ← Decusk(c) if it is not.

We require that Decusk(Encupk(m)) = m for any message
m ∈M.

Indistinguishability of encryptions.
The notion of indistinguishability of encryptions [11] cap-

tures a strong notion of [data]-privacy: The adversary should
not learn any information whatsoever about a plaintext given
its encryption beyond the length of the plaintext.
We view an adversary A as a pair (A1,A2) of probabilistic

algorithms. This corresponds to adversary A running in two
stages. In the “find” stage, algorithm A1 takes on input a
public key upk and outputs two equal-size messages m0 and
m1 ∈M and some state information s. In the “guess” stage,
algorithm A2 receives a challenge ciphertext c which is the
encryption ofmb under upk and where b is chosen at random
in {0, 1}. The goal of A2 is to recover the value of b from s
and c.
A public-key encryption scheme is said semantically secure

(or indistinguishable) if

Pr


I

R← CKeyGen(λ), (upk, usk) R← KeyGen(I),
(m0,m1, s)← A1(upk), b R← {0, 1}, c← Encupk(mb)

:

A2(s, c) = b


− 1

2

is negligible in the security parameter for any polynomial-
time adversary A; the probability is taken over the random
coins of the experiment according to the distribution in-
duced by CKeyGen and KeyGen and over the random coins
of the adversary.

As we are in the public-key setting, it is worth noting
that adversary A = (A1,A2) is given the public key upk and
so can encrypt any message of its choice. In other words,
the adversary can mount chosen-plaintext attacks (CPA).
Hence, we write IE-CPA the security notion achieved by a
semantically secure encryption scheme.1
A stronger scenario is to give the adversary an adaptive

access to a decryption oracle. The previous definition readily
extends to this model. Adversary A = (A1,A2) is allowed
to submit any ciphertext of its choice and receives the corre-
sponding plaintext (or ⊥); the sole exception is that A2 may
not query the decryption oracle on challenge ciphertext c.
Likewise, we write IE-CCA the corresponding security no-
tion.

Indistinguishability of keys.
Analogously, the notion of indistinguishability of keys cap-

tures a strong requirement about key privacy: The adver-
sary should not be able to link whatsoever a ciphertext with
its underlying encryption key.
As before, we view an adversary A as a pair (A1,A2) of

probabilistic algorithms. In the “find” stage, algorithm A1
takes on input two public keys upk0 and upk1 and outputs
1We deviate from the usual notation of IND-CPA to empha-
size the fact that indistinguishability is about encryptions.

a message m and some state information s. Then in the
“guess” stage, algorithm A2 receives a challenge ciphertext
c which is the encryption of m under upkb where b is chosen
at random in {0, 1}. The goal of A2 is to recover the value
of b from s and c.
More formally, a public-key encryption scheme is said

anonymous (or key-private) if

Pr



I
R← CKeyGen(λ), (upk0, usk0) R← KeyGen(I),

(upk1, usk1) R← KeyGen(I), (m, s)← A1(upk0, upk1),
b
R← {0, 1}, c← Encupkb(m)

:

A2(s, c) = b


−

1
2

is negligible in the security parameter for any polynomial-
time adversary A; the probability is taken over the random
coins of the experiment according to the distribution in-
duced by CKeyGen and KeyGen and over the random coins
of the adversary.
This definition of anonymity gives rise to the security no-

tion of IK-CPA or indistinguishability of keys under chosen-
plaintext attacks. If the adversary is given adaptive access to
a decryption oracle, the corresponding security notion is IK-
CCA or indistinguishability of keys under chosen-ciphertext
attacks.

Of course, the goals of data-privacy and key-privacy can
be combined to define extended security notions. A public-
key encryption scheme achieves IND-CPA security if it is
both IE-CPA and IK-CPA. Likewise, a public-key encryp-
tion scheme achieves IND-CCA security if it is both IE-CCA
and IK-CCA.

3. REVOCABLE ANONYMITY
As exemplified in the introduction, there are several use

cases where the sender is trustful and has no incentive to
cheat. However, while it may be useful to keep the identity
of the receiver private, it may also be useful to have some
means to discover the identity of a receiver in case of mis-
use or dispute. This section formally defines the notion of
revocable anonymity.

3.1 Formal definition
We augment the definition of public-key encryption scheme

so that anonymity can be revoked. The formalization shares
many parts with that of a (regular) public-key encryption
scheme. The main differences are (i) the generation of a
pair of keys for tracing purposes in the common-key genera-
tion and (ii) a tracing algorithm for recovering the intended
recipient of a ciphertext.
More formally, a public-key encryption scheme with re-

vocable anonymity is a tuple of five algorithms (CKeyGen,
KeyGen,Enc,Dec,Trace):

Common-key generation The key generation algorithm
CKeyGen takes on input some security parameter λ
and

1. generates the opener’s secret and public keys osk
and opk;

2. outputs some common key I: I R← CKeyGen(λ).

Here, element I may include a copy of public key opk.

Key generation The key generation algorithm KeyGen is
a randomized algorithm that takes on input I and re-
turns a matching pair of public key and secret key for
some user: (upk, usk) R← KeyGen(I).

Encryption Let M denote the message space. The en-
cryption algorithm Enc is a randomized algorithm that
takes on input a public key upk and a plaintextm ∈M
and returns a ciphertext c. We write c← Encupk(m).

Decryption The decryption algorithm Dec takes on input
secret key usk (matching upk) and ciphertext c and re-
turns the corresponding plaintext m or a special sym-
bol ⊥ indicating that the ciphertext is invalid. We
write m ← Decusk(c) if c is a valid ciphertext and
⊥ ← Decusk(c) if it is not.

Tracing The tracing algorithm Trace takes on input se-
cret opening key osk and ciphertext c and returns the
corresponding user’s public key upk or a special sym-
bol ⊥ indicating that the ciphertext is invalid. We
write upk ← Traceosk(c) if c is a valid ciphertext and
⊥ ← Traceosk(c) if is not.

We require for a public-key encryption scheme with revo-
cable anonymity the two following properties:

Correctness For any message m ∈ M and for any pair
of matching public key/secret key returned by the key
generation algorithm, (upk, usk) R← KeyGen(I), one has
Decusk(Encupk(m)) = m; and

Traceability For any message m ∈ M and for any pair
of matching public key/secret key returned by the key
generation algorithm, (upk, usk) R← KeyGen(I), one has
Traceosk(Encupk(m)) = upk.

Given a [well formed] ciphertext, the first property (cor-
rectness) ensures that the intended recipient will always re-
cover the corresponding plaintext while the second property
(traceability) ensures that the tracing authority will always
discover the recipient, if needed.

3.2 Non-malleability
In this section we add a further requirement to enforce

the traceability property and discuss the notion of non-mal-
leability.

A limited solution.
A simple way to get revocable anonymity is to (i) encrypt

the message as usual with a key-private public-key encryp-
tion scheme, (ii) encrypt the recipient’s identity under a
trusted public encryption-key, and (iii) define the resulting
ciphertext as the concatenation of the two encryptions and
make it available to the recipient.
It is easily verified that the above scheme meets the cor-

rectness and traceability properties. But it also suffers from
limitations, even in the honest-sender-case. The traceability
property resides only in the presence of the encryption of
the recipient’s identity. If, for various reasons, this encryp-
tion is modified or suppressed, the trusted authority would

no longer be able to discover the recipient’s identity. On the
other hand, the recipient might still be able to decrypt the
ciphertext and recover the corresponding plaintext message.

Remark. We note that signing the ciphertext (or similar
techniques) does not solve the problem —or does, in ad-
dition, require compliant decrypting hardware to check the
ciphertext validity and return the corresponding plaintext
message only if the test is successful.

Non-malleability.
It is useful to introduce some notation We extend the

decryption algorithm to vectors of ciphertexts (denoted in
boldface). If c = (c1, . . . , cn), Decsk(c) stands for (Decsk(c1),
. . . ,Decsk(cn)).
Basically, with non-malleability [9, 3], the goal of the ad-

versary is, given a ciphertext ĉ, to output a vector c of ci-
phertexts whose decryption, Decsk(c), is “meaningfully” re-
lated to Decsk(ĉ). We write R(Decsk(c),Decsk(ĉ)) = 1 for
some relation R. Suppose now that the ciphertext output
by the above scheme (limited solution) is non-malleable. As
a result, if the tracing authority is not able to trace the ci-
phertext then its intended recipient would not be able to
decrypt it. This prevents ciphertext modifications.

The requirement of non-malleability can be captured as
the advantage of an adversaryA running some experiment [3]
(see also [4]).
Define experiment Expb by




I
R← CKeyGen(λ), (upk, usk) R← KeyGen(I),

(M, s)← A1(upk, opk),
m0,m1

R←M, ĉ← Encupk(m1),
(R, c)← A2(M, s, ĉ)

:

R(Decusk(c),mb)) = 1 .

Ciphertext vector c returned by the adversary is supposed
to be valid and not containing ĉ (i.e., ⊥ /∈ Decusk(c) and
ĉ /∈ c).
This leads to the property of non-malleability, adapted to

our purposes:

Non-malleability For any probabilistic polynomial-time ad-
versary A = (A1,A2), the advantage

Pr[Exp1(λ) = 1]− Pr[Exp0(λ) = 1]

has to be negligible in security parameter λ whenever
Traceosk(c) 6= upk.

In the previous definition, the inequality Traceosk(c) 6= upk
should not be understood in the strict sense as a mere ap-
plication of the trace algorithm to the components of c. It
should be interpreted as “the tracing manager (owning se-
cret opening key osk) cannot recover upk from c.”

4. TRANSFORMATION
We are now ready to present our transformation. It takes

on input a key-private public-key encryption scheme, say
SMsg, and outputs a key-private public encryption scheme
with revocable anonymity. Input scheme SMsg = (CKeyGen,
KeyGen,MsgEnc,MsgDec) is supposed to meet [at least] the
IK-CPA security notion.

The transformation requires the presence of a trusted party,
called tracing authority. The tracing authority owns a pair
of keys (opk, osk) registered for public-key encryption scheme
SID = (IDCKeyGen, IDKeyGen, IDEnc, IDDec), meeting [at
least] the IE-CPA security notion.
The output scheme S ′, after the transformation, is de-

tailed into the following five algorithms: S ′ = (RevCKeyGen,
RevKeyGen,RevEnc,RevDec,Trace). Specifically, we have:
Common-key generation This algorithm takes on input

a security parameter λ and outputs common parame-
ter: I R← RevCKeyGen(λ) = CKeyGen(λ) — so for the
first algorithm the new scheme borrows the first al-
gorithm of the original SMsg. As mentioned before, I
may include a copy of public key opk.
This algorithm also selects a non-malleable symmetric
encryption scheme E and a second-preimage resistant
key-derivation function KDF, whose descriptions are
made public.

Key generation This randomized algorithm is run by some
user. Given as an input common parameter I, it out-
puts a pair of matching public encryption key and
secret decryption key, (upk, usk) R← RevKeyGen(I) =
KeyGen(I).
Public-key usk is registered and certified by some au-
thority (typically, the tracing authority).

Encryption This randomized algorithm is used to encrypt
messages. It takes on input public keys opk and upk
(i.e., tracing authority’s public key and recipient’s pub-
lic-key), message m to be encrypted, and outputs:

c← RevEncopk(upk,m)
= (IDEncopk(upk),MsgEncupk(Ek(m))

with k = KDF(IDEncopk(upk)) is a key derived from
the first part with key derivation function KDF.

Decryption This algorithm is run by the intended recip-
ient, owning secret key usk. Taking on input cipher-
text (c1, c2) and usk, this algorithm computes k′ =
KDF(c1) and next E−1

k′ (MsgDecusk(c2)), which yields
corresponding plaintext message m (or ⊥).

Tracing This algorithm is run by the tracing authority. On
input the first part c1 of ciphertext c = (c1, c2) and
secret opening key osk, it returns the public key cor-
responding to the intended recipient (or ⊥), upk ←
Traceosk(c1) = IDDecosk(c1).

Discussion.
We remind that we are in the honest-sender setting. In

particular, the sender does not encapsulate fake or wrong
identities.
The building blocks needed in the transformation require

to satisfy some properties. The transformation splits the
RevEnc algorithm into two sub-algorithms; i.e., IDEnc and
MsgEnc. This relaxes security requirements about RevEnc
components. We explain below the choices that were made.
• Encryption schemes SID and SMsg are required to be
respectively IE and IK so as to prevent that the re-
cipient’s identifier (namely, upk) leaks from ciphertext
(IDEncopk(upk),MsgEncupk(Ek(m)).

Remark that IDEnc algorithm is used to output ci-
phertexts intended only to be decrypted by the tracing
authority. This algorithm is therefore not necessarily
required to be anonymous. Remark also that key k =
KDF(c1) is randomized because c1 = IDEncopk(upk) is
randomized.

• Key derivation function KDF is required to be second-
preimage resistant. If this requirement is not met,
it would be possible to substitute c1 with a different
c′1 having the same image through the key derivation
function but disallowing the tracing of upk.

• Symmetric encryption scheme E is required to be non-
malleable.
Remember that in the non-malleability definition, the
relation “Traceosk(c) 6= upk” means that the tracing
authority is not able to recover upk from c.
Suppose now that a valid ciphertext c = (c1, c2) is
“perturbed” into c̄ = (c̄1, c2) such that c̄1 and c1 only
differ in a few bits. In that case, the recipient can by
exhaustive search correct c̄1 into c1 and recover the
corresponding plaintext. But, the tracing authority
can in the same way recover the recipient’s identifier
(upk) from corrupted c̄1. We can therefore assume that
c1 is corrupted into c̄1 such that its correct value can-
not be recovered by the intended recipient. The goal
of the non-malleability requirement on E is to prevent
the recipient to infer information related to m from
Ek(m) = MsgDecusk(c2) because k = KDF(c1) is un-
known to her (and cannot be guessed).

5. APPLICATIONS
We give two applications of our generic transformation.

This first one is based on a traditional public-key infrastruc-
ture (PKI) while the second one relies on the identity-based
paradigm.
To simplify the presentation, we assume that the group

manager (i.e., the authority in charge of setting up and
maintaining the system) and the tracing authority are a sin-
gle entity, called hereafter system authority. It is however
easy to adapt the schemes to deal with two separate entities.

5.1 PKI-based solution
In [15], Tsiounis and Yung demonstrated that ElGamal

encryption scheme [10] in a prime-order group G is IE-CPA
under the decisional Diffie-Hellman assumption. Later, Bel-
lare et al. [2] showed that it also achieves IK-CPA security
under the same assumption. Hence, applying our generic
transformation, we get a public-key encryption scheme with
revocable anonymity. The description of the resulting scheme
is detailed below.

Common-key generation Taking as an input some secu-
rity parameter λ, a group G of prime order p and a
generator g ∈ G are selected. The common key is
I = {p, g}.
The message space is denoted by M. Let also a non-
malleable symmetric encryption scheme E : K×M→
M, a second-preimage resistant key-derivation func-
tion KDF : G→ K, and a cryptographic hash function
H : G→M.

The secret opening key is some random element s ∈ Zp
and the corresponding public opening key is h = gs.
(The public system parameters are {M, p, g, h, E ,KDF,
H}.)

Key generation In order to join the system, user Ui ran-
domly chooses xi ∈ Zp and computes yi = gxi . Ui’s
public key is upki = {yi} while Ui’s secret key is uski =
{xi}.

Encryption To send a message m ∈ M to user Ui, one
proceeds as follows:

• pick at random r1 ∈ Zp and compute c1 = (gr1 , yi·
hr1);
• compute k = KDF(c1), pick at random r2 ∈ Zp,
and compute c2 = (gr2 , H(yir2)⊕ Ek(m)).

The ciphertext is c = (c1, c2).

Decryption Upon receiving ciphertext c = (c1, c2), user Ui
recovers plaintext m as:

• letting c2 = (ϕ1, ϕ2), compute t = H(ϕ1
xi) using

her secret key xi;
• compute k′ = KDF(c1) and obtain m as E−1

k′ (t⊕
ϕ2).

Tracing The intended recipient of ciphertext c = (c1, c2) is
recovered by the system authority using secret opening
key s as:

• letting c1 = (ϑ1, ϑ2), compute y′ = ϑ2 · ϑ1
−s;

• check in the list of user’s public keys whether
there is some yj = y′;
• if so, intended recipient is Uj .

The efficiency of this scheme can be improved by choosing
a single random element in Zp (i.e., r1 = r2). A ciphertext
is then given by (gr1 , yi · hr1 ,H(yir1)⊕ Ek(m)).

ElGamal scheme provides data privacy and anonymity
against chosen-plaintext attacks. A scheme with revoca-
ble anonymity can be similarly obtained by considering the
IE-CCA Cramer-Shoup scheme [8], later proven secure in
the IK-CCA sense in [2].

5.2 Identity-based solution
The previous scheme can be adapted to fit the identity-

based setting. We replace ElGamal scheme with Boneh-
Franklin’s BasicIdent scheme [5]. This latter scheme further
requires a bilinear map ê : G×G→ GT such that the bilinear
Diffie-Hellman assumption holds [6].
Applying our generic transformation, we get:

Common-key generation Taking as an input some secu-
rity parameter λ, groups G and GT of prime order p, a
generator g ∈ G, and a non-degenerate bilinear pairing
ê : G×G→ GT are selected.
The message space is M. Let also an encoding func-
tion µ : {0, 1}∗ → G, a non-malleable symmetric en-
cryption scheme E : K ×M→M, a second-preimage
resistant key-derivation function KDF : G→ K, and a
cryptographic hash function H : GT →M.

The secret opening keys is some random element s ∈
Zp and the corresponding public opening key is h = gs.
(The public system parameters are {M, p, g, ê, h, µ, E ,
KDF,H}.)

Key generation In order to join the system, user Ui ob-
tains from the system authority her corresponding se-
cret key uski = {gi}, where gi = µ(Ui)s.

Encryption To send a message m ∈ M to user Ui, one
proceeds as follows:

• pick at random r1 ∈ Zp and compute c1 = (gr1 ,
µ(Ui) · hr1);
• compute k = KDF(c1), pick at random r2 ∈ Zp,
and compute c2 = (gr2 , H(zir2) ⊕ Ek(m)) where
zi = ê(µ(Ui), h).

The ciphertext is c = (c1, c2).

Decryption Upon receiving ciphertext c = (c1, c2), user Ui
recovers plaintext m as:

• letting c2 = (ϕ1, ϕ2), compute t = H(ê(gi, ϕ1))
using her secret key gi;
• compute k′ = KDF(c1) and obtain m as E−1

k′ (t⊕
ϕ2).

Tracing The intended recipient of ciphertext c = (c1, c2) is
recovered by the system authority using secret opening
key s as:

• letting c1 = (ϑ1, ϑ2), compute g′ = ϑ2 · ϑ1
−s;

• check in the list of users whether there is some Uj
such that µ(Uj) = g′;
• if so, intended recipient is Uj .

Here too, the efficiency of the scheme can be improved by
choosing a single random element in Zp.

6. REFERENCES
[1] A. Barth, D. Boneh, and B. Waters. Privacy in

encrypted content distribution using private broadcast
encryption. In G. Di Crescenzo and A. Rubin, editors,
Financial Cryptography and Data Security, volume
4107 of Lecture Notes in Computer Science, pages
52–64. Springer, 2006.

[2] M. Bellare, A. Boldyreva, A. Desai, and
D. Pointcheval. Key-privacy in public-key encryption.
In C. Boyd, editor, Advances in Cryptology −
ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 566–582. Springer, 2001.

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway.
Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology − CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 26–45. Springer,
1998.

[4] M. Bellare and A. Sahai. Non-malleable encryption:
Equivalence between two notions, and an
indistinguishability-based characterization. In
M. Wiener, editor, Advances in Cryptology −
CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 519–536. Springer, 1999.

[5] D. Boneh and M. K. Franklin. Identity-based
encryption from the Weil pairing. In J. Kilian, editor,
Advances in Cryptology − CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages
213–229. Springer, 2001.

[6] D. Boneh and M. K. Franklin. Identity-based
encryption from the Weil pairing. SIAM J. of
Computing, 32(3):586–615, 2003. Extended abstract in
Proc. of CRYPTO 2001.

[7] D. Chaum and E. van Heyst. Group signatures. In
D. W. Davies, editor, Advances in Cryptology −
EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 257–265. Springer, 1991.

[8] R. Cramer and V. Shoup. A practical public key
cryptosystem provably secure against adaptive chosen
ciphertext attack. In H. Krawczyk, editor, Advances in
Cryptology − CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 13–25. Springer,
1998.

[9] D. Dolev, C. Dwork, and M. Naor. Non-malleable
cryptography. SIAM J. Computing, 30(2):391–437,
2000.

[10] T. ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472,
1985.

[11] S. Goldwasser and S. Micali. Probabilistic encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.

[12] M. Izabachène and D. Pointcheval. New anonymity
notions for identity-based encryption. In R. Ostrovsky,
R. De Prisco, and I. Visconti, editors, Security and
Cryptography for Networks, volume 5229 of Lecture
Notes in Computer Science, pages 375–391. Springer,
2008.

[13] A. Kiayias, Y. Tsiounis, and M. Yung. Group
encryption. In K. Kurosawa, editor, Advances in
Cryptology − ASIACRYPT 2007, volume 4833 of
Lecture Notes in Computer Science, pages 181–199.
Springer, 2007.

[14] A. Shamir. Identity-based cryptosystems and
signature schemes. In G. R. Blakley and D. Chaum,
editors, Advances in Cryptology − CRYPTO ’84,
volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1984.

[15] Y. Tsiounis and M. Yung. On the security of ElGamal
based encryption. In H. Imai and Y. Zheng, editors,
Public Key Cryptography, volume 1431 of Lecture
Notes in Computer Science, pages 117–134. Springer,
1998.

