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Abstract

Group signatures allow members of a group to sign anonymously on group’s behalf. However,
in exceptional cases, the anonymity can be revoked by a group manager. One of the most difficult
tasks in developing group signature schemes is to prevent coalition attacks: malicious collusions
of group members that produce untraceable signatures. This paper describes coalition attacks
against some recently proposed group signature schemes. It also presents a candidate scheme
resistant against coalition attacks; its security is based on a widely accepted number-theoretic
assumption. The paper also includes a survey of notable group signature schemes.

1 Introduction

Group digital signatures are a relatively new concept introduced by Chaum and van Heijst [9] in 1991.
A group signature, akin to its traditional counterpart, allows the signer to demonstrate knowledge
of a secret with respect to a specific document. A group signature is publicly verifiable: it can be
validated by anyone in possession of a group public key. However, group signatures are anonymous
in that no one, with the exception of a designated group manager, can determine the identity of
the signer. Furthermore, group signatures are unlinkable which makes it computationally hard to
establish whether or not multiple signatures are produced by the same group member. In exceptional
cases (such as a legal dispute) any group signature can be “opened” by a group manager to reveal
unambiguously the identity of the actual signer. At the same time, no one —including the group
manager — can misattribute a valid group signature.

The salient features of group signatures make them attractive for many specialized applications, such
as voting and bidding. They can, for example, be used in invitations to submit tenders [10]. All
companies submitting a tender form a group and each company signs its tender anonymously using
the group signature. Once the preferred tender is selected, the winner can be traced while the other
bidders remain anonymous. More generally, group signatures can be used to conceal organizational
structures, e.g,, when a company or a government agency issues a signed statement. Group signatures
can also be integrated with an electronic cash system whereby several banks can securely distribute
anonymous and untraceable e-cash. The group property offers the further advantage of concealing
the identity of the cash-issuing bank [20].
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The rest of this paper is organized as follows. In the next section, we formally define group signatures
and the associated security properties. Section 3 discusses the difficulty of coalition-resistance and
presents some coalition attacks against several recent schemes. As an educational exercise, we review
in Section 4 our (failed) attempts to design a coalition-resistant group signature scheme. We then
sketch out a new candidate scheme with security based on the strong RSA assumption. We conclude
in Section 5. (Additionally, previous and related work in group signatures is surveyed in Appendix A.)

2 Group Signatures

We now present a more formal definition and desired properties of group signatures. For an in-depth
discussion of this subject, we refer the reader to [5].

Definition 2.1 A group signature scheme is a digital signature scheme comprised of the following
procedures:

e SETUP: An algorithm for generating the initial group public key Y.

e JOIN: A protocol between the group manager and a user that results in the user becoming a
new group member.

e SIGN: A protocol between a group member and a user whereby a group signature on a user-
supplied message is computed by the group member.

e VERIFY: An algorithm for establishing the validity of a group signature given a group public
key and a signed message.

e OPEN: An algorithm that, given a signed message and a group secret key, determines the identity

of the signer.

A secure group signature scheme must satisfy the following properties:

¢ Unforgeability: Only group members are able to sign messages on behalf of the group.

¢ Anonymity: Given a signature, identifying the actual signer is computationally hard for
everyone but the group manager.

¢ Unlinkability: Deciding whether two different signatures were computed by the same group
member is computationally hard.

¢ Exculpability: Neither a group member nor the group manager can sign on behalf of other
group members.!
A related definition is that of framing [10] which captures the property that a group member

is made responsible for a signature he did not produce.

e Traceability: The group manager is able to open a signature and identify the actual signer;
moreover, a signer cannot prevent the opening of a valid signature.

!Note that the above does not preclude the group manager from creating fraudulent signers (i.e., nonexistent group
members) and then producing group signatures.



The emphasis of the previous properties is on the fact that a single group member cannot generate
signatures that are (in case of a dispute) not traceable to him by the group manager. This means
that a subset of group members, pooling together their secrets, can generate valid group signatures
that cannot be opened by the group manager. In order to avoid this we need the following property:

¢ Coalition-resistance: A colluding subset of group members cannot generate a valid signature
that cannot be traced. This property will be discussed in more detail in Section 3.

Definition 2.2 The efficiency or practicality of a group signature scheme is typically based on the
following parameters:

— the size of the group public key Y;

the size of a group signature;
the efficiency of SIGN, VERIFY and OPEN; and
the efficiency of SETUP and JOIN.

3 Difficulty of Coalition-Resistance

A coalition attack occurs when a subgroup of group members pool their secrets together in order to
produce a perfectly valid group signature. Such a signature is untraceable, i.e, the OPEN algorithm
will fail to reveal the signer’s identity.

In this section, we discuss several group signature schemes susceptible to coalition attacks. The aim
is to gain a better understanding of how a coalition attack happens and, in the long run, to develop
coalition-resistant techniques. Qur discussion also illustrates that coalition-resistance is certainly one
of the most challenging properties in designing a secure group signature scheme.

Following the definition in Section 2, each scheme discussed below is presented as a set of five
algorithms: SETUP, JOIN, SIGN, VERIFY and OPEN. We are mainly concerned with the JOIN algorithm
which enables a new user to join the group. As a result, the new user is issued a membership
certificate which is then used to generate group signatures. We show how the knowledge of one
or several certificates enables a coalition to derive a new (and valid) membership certificate, thus
resulting in untraceable group signatures.

3.1 Camenisch-Stadler Scheme

The coalition-resistance of the (basic) Camenisch-Stadler group signature relies on the following
assumption (see Assumption 5.1 in [5, pp.99-100] and [8, Section 4]).

Assumption 3.1 (Camenisch-Stadler) Let n be an RSA-modulus, e € Z;(n), and a € Z an
element of large order such that computing discrete logarithms w.r.t. base a is infeasible. We assume
that it is hard to compute a pair (xz,v) of integers satisfying:

v°=1+a" (mod n) (1)

if the factorization of n is unknown. Furthermore, we assume that this is true even when other pairs
(zi,v;) satisfying the above equation are known.



Specifically, each group member receives a group certificate of the form (a¢” + 1)d mod n, where
de = 1 (mod ¢(n)) and, under Assumption 3.1, it is assumed to be hard to generate a new valid
group certificate without the aid of the group manager. However, in [3], Ateniese and Tsudik showed
that the present scheme does not satisfy the traceability property. In fact, it is sufficient to note that
(a® 4 1)? can be rewritten as (a” + 1) = a®¥(1 4+ a~")? (mod n). Then, if z = ke for some integer
k, a new certificate can be obtained by computing a™*(a® + 1)? = (1 + «=*)¢ (mod n).? In [3], it is
also shown that — even when x is a generic value, e.g. if gcd(z,e) = 1 — a colluding subset of group
members can easily derive a new certificate, i.e. the scheme does not satisfy the coalition-resistance

property.

As a fix —also suggested by J. Camenisch (see [3]), the value 1 in the certificate structure (a® 4 1)?
can be substituted with a randomly chosen value C'. Thus, Assumption 3.1 should be modified as
follows.

Assumption 3.2 Let n be an RSA-modulus, e € Z;(n), and a € Z an element of large order such
that computing discrete logarithms w.r.t. base a is infeasible. We assume that it is hard to compute
a pair (x,v) of integers satisfying:

v°=C+a” (mod n) (2)

if the factorization of n is unknown and C' is selected randomly. Furthermore, we assume that this
is true even when other pairs (z;,v;) satisfying the above equation are known.

A further countermeasure is to randomize the value x chosen by the group member, for example
by selecting a, 8 and releasing the certificate (a”"’ﬁ + C)d (this has been proposed as a research
challenge in [3]).

We stress that €' must be chosen randomly, in particular, the discrete logarithm (base a) of C' must
be unknown. In fact, if the constant 1 in Eq.(1) is replaced by a constant C' such that discrete
logarithm of C' (base a) is known, it is equally easy to derive a new certificate. Suppose that C' = a°
(mod n) and ¢ is known. Then, replacing 1 by C, Equation (1) becomes

ve=CH4a” =a" (a* " 4 af) = (a(l’_c)d)e(C +a*7) (mod n) . (3)

Hence if (21, 1) is a valid pair, also is (2¢ — 21, v1/a(*1=9% mod n). Assuming that ged(z; —c,e) = 1
and, given two pairs: (21,v1) and (@, v2) with 23 = 2¢ — 21, we can compute T = (vl/vg)aaﬁ =
alolmi—c)+pe)d = 4d (mod n) where a and § are given by the extended Euclidean algorithm, i.e.,
a(x1—c)+ e = 1. Therefore, using a a third pair (z3, v3), a new pair (z,v) = (2c—xs3, vs/ T3~ mod
n) can be derived.

3.2 Tseng-Jan ID-based Scheme

We only give a short description of the signature and refer to the original paper [29] for details.
To SETUP the system, a trusted authority selects two large primes p(= 3 mod 8) and ¢ (= 7 mod 8)
such that (p — 1)/2 and (¢ — 1)/2 are smooth, odd and relatively prime [22]. Let n = pg. The
trusted authority also defines e, d, v and ¢ satisfying ed = 1 (mod ¢(n)) and vt =1 (mod ¢(n)),

?Notice that the group member is required to show knowledge of the a’s exponent in 1+ a_m)d by means of a
standard challenge-response protocol. Even though, the group member does not know —z mod ¢(n), since ¢(n) is
secret, this task can be easily accomplished by changing the sign of cx in the response; where ¢ here represents the
challenge. This relative “problem” also affects the Schnorr and Poupard-Stern signature schemes when the signer works
in groups of unknown order.



selects g of large order in Z7, and computes F' = g* mod n. Moreover, the group manager® chooses
a secret key x and computes the corresponding public key y = F* mod n. The public parameters are
(n,e, g, F,y); the secret parameters are (p,q,d,v,t,z). When a user U; (with identity information D;)
wants to JOIN the group, the trusted authority computes s; = etlog, ID; mod (n) where ID; = D;
or 2D; according to (D;|n) = 1 or —1, and the group manager computes z; = ID;” mod n. The
user membership certificate is the pair (s;,2;). To SIGN a message m, user U; chooses two random
numbers 7y and ry, and computes A = y™ mod n, B = y"2°mod n, C = s; + r1 h(m||A||B) + rge
and D = z;y 2 "mIAIB) mod n, where h(-) is a publicly known hash function. Then, to VERIFY
that (A, B,C, D) is a valid group signature for message m, one checks whether DeAMmIAIB) p =
y© Bh(m||AllB) (mod n). In case of disputes, the group manager can OPEN the signature to recover
who issued it by checking which identity ID; satisfies ID;*¢ = D B~MIIAIB) (mod n).

Let indexes 1 and 2 respectively denote the attributes of user 1 and user 2. If the two users collude,
then they can easily evaluate y? mod n from their certificates (s1,¢1) and (sg,¢5) as follows. Since
sy = etlog, ID1 mod ¢(n), we have g*1 = ID;®" (mod n). Hence, from z; = ID;* mod n, it follows
that

2 = (IDF)7 = (¢ = (9"7)" = y* (mod n) . (1)

So, 1 = (y?)** mod n, and similarly x5 = (y%)*2 mod n. Assuming w.l.o.g. that ged(sy,s2) = 1,
users 1 and 2 can use the extended Fuclidean algorithm to find a, 3 € Z such that as; + fs; = 1.
Consequently, they can recover

d —

y? = yHonths2) = 324,80 (mod n) (5)

from z; and x,. Once they know y? mod n, they can create a new membership certificate as (s,
with 2/ = (y%)* mod n for any &' they choose. Noting that 2'° = y* (mod n), the signatures
produced with this certificate will be valid. However since this certificate does not correspond to a
known identity, the group manager will not be able to open the resulting signatures.

Remark 3.3 In addition its vulnerability to coalition attacks, the Tseng-Jan ID-based signature is
susceptible to universal forgery [17], i.e., anyone can forge a valid group signature for an arbitrary
message m. There are two known attacks on the scheme. In the first attack, an adversary randomly
chooses C and D, computes B = y© D™° mod n, and sets A = B. One can easily see that (4, B,C, D)
is a valid signature for any message m.

The second attack allows to choose A # B. The adversary chooses D and an integer w. Then he
computes B = D™° mod n, A = By“ mod n, and C' = wh(m||A||B) (in Z). Here too, one easily
verifies that the resulting 4-tuple (A, B,C, D) is a valid signature on message m.

3.3 Tseng-Jan Scheme Based on Self-certified Keys

We begin with a brief review of the scheme and refer to [31] for a thorough description. The SETUP
goes as follows: a trusted authority selects n = pg with p = 2p'+1 and ¢ = 2¢’+1 where p, ¢, p’, ¢’ are
all prime, he also selects g of order v = p'¢’ and e, d € Z}, satisfying ed = 1 (mod v). The group man-
ager (a.k.a. group authority in [31]), with identity information G'D, chooses a secret key 2 and com-
putes z = ¢ mod n. After receiving z, the trusted authority computes y = (ga”)GID_1 mod n where
GID = f(GD) for a publicly known hash function f(-), and the group secret key sg = (¢°)~% mod n.
He sends s to the group manager. The public parameters are (n, e, g, y); the secret parameters are
(p,q,d,x,sg). To JOIN the group, a user U; (with identity information D;) chooses a secret key s;,

®In [29], the authors call it group authority.



computes z; = ¢° mod n, and sends z; to the trusted authority. In return, the trusted authority
sends back p; = (gS")IDi_1 4 mod n where ID; = f(D;). From p;, the group manager then computes
2; = pi'P% s mod n. The membership certificate of user U; is the pair (si,x;). When U; wants to
SIGN a message m, he chooses r1, ro and r3 at random and computes A = ry s;, B = 7o~ mod n,
C = y9PA7 modn, D = s; h(m||A||B||C) + r3C (where h(-) is a publicly known hash func-
tion), and F = z; o IAIBICID) 1hod n. To VERIFY the validity of signature (A,B,C,D,F) on
message m, one checks whether y@PAD = (peA phmllAIBICID) 4 GID AVl AIBIC) 0 (mod n).

In case of disputes, the group manager can OPEN the signature by checking which z; satisfies
(wi)eA B-h(m|A[B||C||D) = peA (mod n)

As before, let indexes 1 and 2 respectively denote the attributes of user 1 and user 2. If the two
users collude then they can recover the group secret key sg = ¢~*% mod n. We assume w.l.o.g. that
ged(sy — 1,2 — 1) = 1. So, by the extended Euclidean algorithm, there exist o, 5 € Z such that
a(sy — 1)+ B(sz — 1) = 1. Moreover, we have

x; = pIDiQUsG = g‘xd(_s""'l) = g%t (mod n) . (6)

K3

Hence, from their membership certificates (s1,21) and (s3,232), users 1 and 2 can find

sq = s D=1 = =24, =0 (mod n) . (7)

Consequently, the second Tseng-Jan scheme, too, does not offer coalition-resistance: given sg, users
. . . . —g!

1 and 2 can produce a new valid certificate of their choice as (s',2') where 2’ = s¢=* 1 mod n for

some arbitrary s'.

4 Towards Coalition-Resistance

The previous sections make it fairly evident that finding a group certificate resistant against coalition
attacks is not straightforward. As further evidence, the authors of the present paper have been
involved in a lengthy process of creating and subsequently breaking many certificate constructs and
the underlying number-theoretic assumptions. As a research report and a learning exercise based
on our efforts, we now describe some attempts to find a coalition-resistant group certificate. We
conclude by sketching out a candidate certificate structure based on a standard assumption widely

believed to be hard.

Our starting point is the group signature proposed in [2]. In [2], it was noted that in certain group
signature settings (we refer to as coalition-oblivious) group members have no incentives to collude.
One example application is the digital lottery, where each group member anonymously signs its own
numbered ticket (to make it valid) and the group manager later distributes prizes to the right holders
of the randomly drawn ticket numbers.

For coalition-oblivious settings, [2] presents a viable alternative to costly group signatures that
satisfies all the security properties in Section 2, except coalition-resistance.?

We now review the certificate used in [2] and then describe one of the (failed) attempts to make it
coalition resistant without losing in efficiency.®

*We note that finding a signature scheme that does not satisfy any other property is quite straightforward. For
instance, a group signature not satisfying the unlinkability property can be built with just certified pseudonyms.

"We are grateful to Jacques Traore for pointing out, via private communication, weaknesses in early proposals of
coalition-resistant group signatures.



Let n be product of two safe primes p,q, i.e., p = 2p' + 1 and ¢ = 2¢' + 1 with p’, ¢’ appropriately
selected primes. Let v,d be elements such that v is prime and vd = 1 (mod ¢(n)). Let a be a
generator of a subgroup G C Z} of order p'q’, namely G is the set of quadratic residues modulo n
and @ = a@® mod n, for a randomly chosen @ € Z; (with overwhelming probability the order of a is
p'q’; nevertheless, one may test whether ged(a+1,n) = 1)). The certificate is A(z) = (a% ap)? mod n
where z is the group member’s secret (randomized by the group manager) with 0 < 2 < v, and
ap € G is a constant such that log, a¢ is unknown. The protocol is run as follows ([2]):

1. Using El Gamal encryption, the signer encrypts A(z) with the group manager’s public key
z = a® mod n.

2. Then, he proves to the verifier that he indeed encrypted his valid certificate, i.e., given o =
A(z)z" mod n and § = " mod n, the verifier computes v = a¥/ag mod n and checks that 7 is
a representation w.r.t. bases a and z, where the a’s exponent is in |0, [ and the z’s exponent
equals vlog, 3.

All these checks can be done via standard and efficient techniques.

Evidently, the certificate is not coalition-resistant: two colluding members can compute a new and
untraceable certificate as follows. Assuming A(x1), A(z2) are the certificates of the two colluding
members, it is sufficient to compute [A(z1)]?/A(z2) mod n which yields A(2z1 — x3). It is likely the
case that 0 < 221 — 25 < v. More importantly, two colluding members can easily compute a¢ mod n,
and, thus, generate arbitrary certificates.

To make A(x) coalition-resistant we considered methods forcing the signer to prove some non-linear
relations of his secret . Hence, we came up with the following certificate structure:

A(z) = (2" a1” ag)? mod n (8)

with ag, a1, as random quadratic residues of order p'¢’. First of all, notice that # must be in ]0, v]
since it is easy to compute A(x + tv) from A(x) for an integer ¢. Hence, the signer should prove that
0 < 2 < v and that, given A(x)"/ag, the exponent of ay is the square of the exponent of a; (via
well-known techniques). However, we now show that this certificate, although seemingly robust, is
not coalition-resistant.

Define J(21,23) := A(21)/A(22) = ag®@1=73) q;4#1=22) (mod n). So, given a third certificate A(xs)
and assuming w.l.o.g. that gcd(21 — 22,21 — 23) = 1, we have

J(x1,29)" J(2y1,23)° = ap @ =e)+0 =) o d (mod n) (9)

where a, § are given by the extended Euclidean algorithm, i.e., a(21 — 22)+ 8(z1 — 23) = 1. Assume

furthermore that we are given a fourth certificate A(z4) such that ged(z1—a2,21—24) = 1. Similarly,
2

the extended Euclidean algorithm yields ,£ € Z s.t. J(x1,22)" J(21, 364)g = g,z —ad)+e(ei—ai)] g, d
(mod n). Hence, letting 7 := [a(2? — 23) + B(2? — 22)] — [n(a? — 22) + (27 — 22)], it follows that
J($1, $2)a J($1, $3)ﬁ

K = = qy0" d . 1
[ T(1.72) J(ar,af ax”” (mod n) (10)

Moreover, noting that v is prime, ged(v, 7) will very likely be 1. Therefore, there exist p,o € Z s.t.
pv+ o1 = 1 and thus
ay? = a,XPv1o7) = 4y K7 (mod n) . (11)



Once ay? is known, a;¢ is given, for example, by Eq. (9) as

a d _ J($1,$2)a J($1,$3)ﬁ
DT (a0 -3)

(mod n), (12)

and, hence, ag? is given from any certificate A(xz;) (i € {1,2,3,4}) as

A,

d # (mod n) . (13)
(azd)xi (ald)x,‘

In summary, from their respective certificates A(x;), four colluding group members are able to
derive the values of as?, a1?,ap? (mod n), and, thus, compute a new valid membership certificate

Az) = (azd)x2 (a1%)” ag? mod n whatever the value of .

4.1 Strong RSA-based Scheme

It is clear that this approach is generally flawed and one must re-examine the problem and look
for other solutions. In particular, an ideal solution would have its security based on one or more
well-known number-theoretic problems.

This was first addressed successfully in a recent work by Camenisch and Michels [6]. The security of
their scheme is based on the strong RSA assumption:

Assumption 4.1 (Strong RSA Assumption) Letn = pq be an RSA-like modulus and let G be a
cyclic subgroup of Z, of order #G, |#G| = (. There exists a probabilistic polynomial time algorithm
K which on input 1°¢ outputs a pair (n, z) such that for all probabilistic polynomial-time algorithms
A the probability that A can find w € G and e € Z~, satisfying z = u® (mod n) is negligible.

We now briefly describe the Camenisch-Michels scheme and then show how its efficiency can be
improved [1].

Let n be product of safe primes and G = (g) be a cyclic subgroup of Z; such that the Jacobi
symbol (g|n) = 1. The group manager randomly selects z, h € (¢ with the same order and publishes
(n,g,7,h) and a prior determined range R. These parameters must be publicly verifiable. During
the JOIN operation, the group member selects secret primes e € R, € and sends é = €€, Z = z° mod n
to the group manager, along with evidences that he knows log, Z, that e is indeed in R, and, finally,
that € is product of two primes. Notice that the latter is a quite expensive proof. Later, the group
manager computes the value u = /¢ mod n, which is equivalent to v = z/¢ mod n. The group
certificate is the pair (u,e). Notice that the group manager does not know e that thus becomes the
group member’s secret.® In order to SIGN, the group member encrypts, via El Gamal, the value u
with the group manager’s public key ¥ = g* mod n , i.e. @ = vy™ mod n, 8 = g* mod n, commits
e by computing v = ¢°h", and, finally, shows knowledge of two values sy, sy such that a®t/y®
(mod n) equals z and that log,.(a®/2) = log, 3. All without revealing the secret e. This is done via
standard non-interactive techniques based on proofs of knowledge.

Let us remark that these techniques may not work properly into the group & suggested in the original
scheme [6]. This is because the group member must check that an element a € G, a # +1 is of large
order by testing whether ged(a £+ 1,n) = 1. Unfortunately, this implies only that the order of a is

5 Although ze+k/e, k € Z can be easily derived from z° and z°, but this does not seem to hurt.



at least p'q’, specifically ordg(a) = p'¢’ or 2p'¢’. For the sake of simplicity, we consider the proof
of equality of two discrete logarithms, i.e. given yi*,y5% (mod n), proving that z; = 2. But if
ordg(y1) = ordg(y2) = 2p'¢/, it might be the case that 21 = 22 (mod p'¢’) but 21 #Z 22 (mod 2). A
better choice for GG is the set of quadratic residues modulo n, denoted by ¢),,. In fact, notice that,
when n is product of safe primes, @, is a cyclic group of order p’¢’. In this case, either the group
manager shows evidences that the public values, like z, are quadratic residues or the group member
(and the verifier) modifies the non-interactive proofs by squaring the parameters involved.

4.2 Our Proposal

Finding a more efficient scheme than that in [6] is a difficult task. We can do so only by simplifying
the JOIN operation. More precisely, we can avoid the proof that an element is product of two primes
(as already mentioned, this is quite an expensive technique). A detailed description of the resulting
group signature will appear in an upcoming paper [1], where the new scheme is analyzed in terms
of number of exponentiations. We anticipate that the new scheme is a bit more expensive than that
in [2] (however it satisfies the coalition-resistance property) yet more efficient than that in [6] since
the JOIN operation requires fewer exponentiations.

The basic idea is to extend the certificate structure in [2], i.e., A(z) = (a% ap)? mod n. As already
mentioned, n is the product of two safe primes, a is a generator of @, (the set of quadratic residues),
and ag € (J,, is a constant such that log, ag is unknown. Now, during the JOIN operation the group
member P; receives the certificate A(z) = (a™ ag)¥ mod n, where z; is the group member’s secret
(randomized by the group manager) with Ay < 2; < Ay. That is, the group manager randomly
selects a prime e; and computes d; such that e;d; =1 (mod ¢(n)) for each group member P;, with
0 < A1 < A2 < € (Mg, Ag are fixed a priori). We explicitly require that for any ¢ # j, ¢; # e; must
hold. The protocol carried out by the group member in order to sign a message, proving knowledge
of a valid certificate without revealing useful information, is described in [1]. The security of this
certificate against any coalition attacks is based on the strong RSA assumption. The main difference
with the certificate structure in [6] is that, now, the primes ¢; are exclusively selected by the group
manager, thus avoiding any further costly checks.

5 Conclusions

This paper discussed the difficulty of developing coalition-resistant group signature schemes. It pre-
sented some attacks on newly proposed schemes and provided strategies for making group signature
provably secure.
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A Previous Work

As mentioned in the introduction, group signatures’ were first introduced and realized by Chaum

and van Heijst [9] in 1991. A number of improvements and enhancements followed. In [10], Chen and
Pedersen answer some open questions raised in [9] and realize the first constructions which allow new
members to dynamically join the group. Camenisch [4] introduces and constructs generalized group
signatures which allow some coalitions of group members to sign on the group’s behalf. However, all
these signature schemes present the main drawback that the length of the group public key depends
on the number of group members. Note that this is always the case when unconditional anonymity
is desired [11].

Based on previous work of Park, I. Lee, and Won [25] (flawed in [23]), Kim, Park, and Won [16]
put forth the concept of convertible group signatures. In addition to the properties of the standard
group signatures, convertible group signatures of a given group member can be turned into ordinary
signatures if that member releases some secret information. Later, Lim and P.J. Lee [19] (see
also [23]) broke their schemes, showing that the parameters were improperly chosen and, more
importantly, that the proposed group signatures were not coalition-resistant. Wang, Hwang, and N.-
Y. Lee [32] further comment that their schemes do not allow to uniquely identify the original signer,
even if the signer honestly follows the signature procedure. The reverse direction, i.e., converting an
ordinary signature into a group signature, was investigated by Petersen [27]. His generic conversion
makes use of the ‘indirect disclosure proof’ technique [13]; the length of the resulting group signatures
is, however, linear in the number of group members.

"The notion of group signatures is sometimes confused with the notion of group-oriented signatures where certain
subsets of a group of people are allowed to sign on behalf of the group [12]. However, these latter schemes do not
provide a method for identifying the signers.
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Following Shamir [28], Park, Kim, and Won [24] (see also [26]) suggest ID-based group signatures.
Their scheme was broken by Mao and Lim [21]: exploiting the prime order subgroup structure
of the scheme, they showed that the anonymity of the signatures was not guaranteed. Moreover,
the Park-Kim-Won scheme suffers from being rather expensive and ‘static’ in the sense that if new
group members are added, the previously signed messages can no longer be verified with the updated
public-key. A much better ID-based group signature scheme which does not present these limitations
was proposed by Tseng and Jan [29]. In [31], Tseng and Jan also propose a group signature scheme
based on the related notion of self-certified public keys [14]. See Section 3 for a discussion on the
security of these two schemes.

Another efficient group signature scheme was recently proposed by W.-B. Lee and Chang [18], but,
unfortunately, it does not enjoy the desirable property of unlinkability. An improved (i.e., unlinkable)
version of the Lee-Chang scheme is proposed in [30]. Actually, any obvious attempt to make the
Lee-Chang scheme unlinkable would likely fail; furthermore, both the original and the improved
Lee-Chang schemes are known to be susceptible to universal forgeries [15].

The first group signature suitable for large groups is that of Camenisch and Stadler [8]: both the
length of the group public key and the group signatures are independent of the group’s size. Moreover,
a new member addition does not involve re-issuing other members’ keys and/or changing the group
public key. The Camenisch-Stadler scheme was subsequently improved by Camenisch and Michels
in [6] (see also [7]), which now undoubtedly represents the state-of-the-art in the field; i.e., the most
practical group signature scheme (in the sense of Definition 2.2).

Lysyanskaya and Ramzan introduce group blind signatures in [20]. These signatures require that a
group member signs on group’s behalf a document without knowing its content. In [3], Ateniese
and Tsudik discuss two other extensions of group signatures, namely multi-group signatures and sub-
group signatures. A multi-group signature is a set of regular group signatures generated by the same
signer as a member of multiple groups, whereas a sub-group signature is a group signature generated
by a sub-group of group members. The main difference with the generalized group signatures as
defined by Camenisch [4] resides in that the size of the sub-group is publicly verifiable.
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