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Abstract: This paper introduces new 𝑝𝑟𝑞-based one-way functions and companion
signature schemes. The new signature schemes are interesting because they do not
belong to the two common design blueprints, which are the inversion of a trapdoor
permutation and the Fiat–Shamir transform.
In the basic signature scheme, the signer generates multiple RSA-like moduli
𝑛𝑖 = 𝑝𝑖

2𝑞𝑖 and keeps their factors secret. The signature is a bounded-size prime
whose Jacobi symbols with respect to the 𝑛𝑖’s match the message digest. The
generalized signature schemes replace the Jacobi symbol with higher-power residue
symbols.
Given of their very unique design the proposed signature schemes seem to be
overlooked “missing species” in the corpus of known signature algorithms.
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1 Introduction

1.1 One-Way Functions

A fundamental building block for constructing secure signature schemes or public-
key cryptosystems is one-way functions [15, Chapter 2]. Informally, a one-way
function (OWF) is a function 𝑓 that is easy to compute in polynomial time (by
definition) on every input, but hard to invert given the image of a random input.

Basically, there exist three families of OWFs: (i) one-way permutations which
are bijective OWFs, (ii) trapdoor OWFs which are one-way unless some extra
information is given, and (iii) collision-free or collision-resistant hash functions.
Almost all known OWFs have been based on intractable problems from number
theory or some related mathematical fields like coding theory.
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1.2 Digital Signatures

Diffie and Hellman in their seminal work [11] first pointed out the notion of
digital signatures. Since then, there have been many signature proposals built
from trapdoor one-way permutations based on different algebraic assumptions. The
most well-known being the one devised by Rivest, Shamir and Adleman from the
so-called RSA assumption [36].

Concurrently to the above, another popular approach to construct signature
schemes is by using the Fiat–Shamir tranform [13]. It consists in turning a public-
coin proof of knowledge into a signature scheme, which has yielded many efficient
signature schemes like the Schnorr signature [42].

1.3 Cryptography Modulo 𝑝𝑟𝑞

Moduli of the form 𝑝𝑟𝑞 have found a few applications in cryptography since the mid
1980s, the most notable of which are probably the ESIGN signature scheme and its
variants using 𝑝2𝑞 [33, 14, 32, 18, 43], Okamoto–Uchiyama’s cryptosystem [31, 41],
Schmidt-Samoa’s cryptosystem [40] or constructions such as [44] and [38].

There are four main approaches of factorization algorithms for the structure
𝑝𝑟𝑞: The Elliptic Curve Method (ECM) [27] which was improved by Peralta and
Okamoto [35], the Number Field Sieve (NFS) [23], the Lattice Factoring Method
(LFM) [4] and factoring using Jacobi symbols. Note that the special structure of
𝑝𝑟𝑞 is not threatened by NFS beyond regular RSA moduli are threatened by that
same attack. Actually, it turns out that using 𝑝2𝑞 moduli does not seem to render
factoring significantly easier. Boneh, Durfee and Howgrave-Graham [4] showed
that 𝑛 = 𝑝𝑟𝑞 can be factored in polynomial time when 𝑟 is large (i.e., 𝑟 ≃ log 𝑝).
Consequently, as stated in [30], this LLL-based approach [25] does not apply to
the setting considered in this paper where 𝑟 is rather small. See also [29, 28].

Organization

The rest of this paper is organized as follows. In the next section, we introduce
some useful notation and review the definitions of the Jacobi symbol and of a
signature scheme. Section 3 proposes a new OWF, building on the concept of
Jacobi imprint. We then present in Section 4 a first signature scheme relying on
this new OWF and prove its security. In Section 5, we generalize our basic design
to higher-order residue symbols and introduce the corresponding signature schemes.
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As an illustration, we implement Quartapus in Section 6, a signature scheme based
on the quartic residue symbol. Finally, we conclude the paper in Section 7.

2 Notation and Basic Definitions

If 𝒟 is a finite domain, we let 𝑥 $← 𝒟 denote picking an element of 𝒟 uniformly
at random and assigning it to 𝑥. A boldface variable 𝑥 is used to denote a vector
of elements identified by that variable; i.e., 𝑥 = (𝑥0, . . . , 𝑥𝑘−1). The symbol P
stands for the set of (rational) primes. Given a vector 𝑛 = (𝑛0, . . . , 𝑛𝑘−1) of
pairwise co-prime integers 𝑛𝑗 (0 ≤ 𝑗 ≤ 𝑘 − 1) and a vector 𝑥 = (𝑥0, . . . , 𝑥𝑘−1)

of integers, we use CRT(𝑥,𝑛) for the Chinese-remainder function, returning the
smallest non-negative integer 𝑦 such that 𝑦 ≡ 𝑥𝑗 (mod 𝑛𝑗) for 0 ≤ 𝑗 ≤ 𝑘 − 1 [12,
Chapter 2].

2.1 The Jacobi Symbol

Given a positive integer 𝑛, an integer 𝑎 with gcd(𝑎, 𝑛) = 1 is called a quadratic
residue modulo 𝑛 if and only if 𝑥2 ≡ 𝑎 (mod 𝑛) is solvable. If 𝑎 is not a quadratic
residue then it is called a quadratic non-residue modulo 𝑛.

Let 𝑎 be an integer and let 𝑝 ∈ P, 𝑝 ̸= 2. The Legendre symbol
(︁
𝑎

𝑝

)︁
is defined

as: (︂
𝑎

𝑝

)︂
=

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑎 is a quadratic residue modulo 𝑝 ,

−1 if 𝑎 is a quadratic non-residue modulo 𝑝 ,

0 if gcd(𝑎, 𝑝) ̸= 1 .

The Legendre symbol satisfies Euler’s criterion, namely
(︁
𝑎

𝑝

)︁
≡ 𝑎

𝑝−1
2 (mod 𝑝).

The Jacobi symbol is a natural generalization of the Legendre symbol.

Definition 1. Let 𝑛 be an odd positive integer with prime factorization 𝑛 =
∏︀

𝑗 𝑝𝑗
𝑒𝑗 .

Then, for an integer 𝑎, the Jacobi symbol
(︁
𝑎

𝑛

)︁
is given by(︂

𝑎

𝑛

)︂
=

∏︁
𝑗

(︂
𝑎

𝑝𝑗

)︂𝑒𝑗

with the convention
(︁
𝑎

1

)︁
= 1 for all integers 𝑎.

Interestingly, the prime factorization of 𝑛 is not required for evaluating
(︁
𝑎

𝑛

)︁
. It can

be efficiently computed with 𝑂((log2 𝑎)(log2 𝑛)) bit operations [1, § 5.9]. We point
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out that the Legendre and Jacobi symbols are indistinguishable when 𝑛 is an odd
prime. Also, we note that the Legendre symbol allows to determine whether an
integer is a quadratic residue or not, whereas the Jacobi symbol does not allow
checking this property.

2.2 Digital Signatures

A signature scheme [20] is a tuple, Σ = (KeyGen,Sign,Verify), of probabilistic
polynomial-time algorithms satisfying:
KeyGen(1𝜅) On input security parameter 1𝜅, key generation algorithm KeyGen

produces a pair (pk, sk) of matching public and private keys.
Sign(sk,𝑚) Given a private key sk and a message 𝑚 in a setℳ of messages, signing

algorithm Sign produces a signature 𝜎.
Verify(pk,𝑚, 𝜎) Given a public key pk, a message 𝑚 ∈ℳ, and a signature 𝜎, the

verifying algorithm Verify checks whether 𝜎 is a valid signature on 𝑚 with
respect to pk.

The classical security notion for signature schemes is existential unforgeability
against chosen-message attacks (in short, EUF-CMA) [16]. Basically, it requires that
an adversary having access to a signing oracle returning the signature on messages
of its choice is unable to produce a valid signature on a message not previously
submitted to the signing oracle. In the random oracle model [2], the adversary has
in addition access to a hash oracle viewed as a random oracle. More formally:

Definition 2. A signature scheme Σ is EUF-CMA secure if, for every probabilistic
polynomial-time adversary 𝒜, the success probability, AdvEUF𝒜,Σ(𝜅) := Pr

[︀
EUF𝒜Σ (𝜅) =

1
]︀
, is negligible against the security game defined in Figure 1.

EUF𝒜Σ (𝜅):

Hist← ∅
(sk, pk)

$← Σ.KeyGen(1𝜅)

(𝑚*, 𝜎*)← 𝒜Sign(sk,·)(pk)

if 𝑚* ̸∈ Hist

return Σ.Verify(pk,𝑚*, 𝜎*)

return 0

Sign(sk,𝑚):

𝜎
$← Σ.Sign(sk,𝑚)

Hist← Hist∪{𝑚}
return 𝜎

Verify(pk,𝑚, 𝜎):

return Σ.Verify(pk,𝑚, 𝜎)

Fig. 1: EUF-CMA experiment for digital signature schemes.
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3 A Candidate One-Way Function

If 𝑝 is an odd prime then half of the integers in the sequence 1, 2, . . . , 𝑝 − 1 are
quadratic residues modulo 𝑝, and half are not. The problem of counting the number
of occurrences of 𝑘 distinct integers (𝑎0, 𝑎1, . . . , 𝑎𝑘−1) modulo 𝑝 obeying a given

pattern (𝜖0, 𝜖1, . . . , 𝜖𝑘−1) with 𝜖𝑗 =
(︁
𝑎𝑗

𝑝

)︁
∈ {−1, 1} and variations thereof has been

studied in a number of papers, including [9, 10, 7, 34, 17, 37]. In particular, the
results of Peralta in [34] indicate that the probability of(︁(︁

𝑎0

𝑝

)︁
,
(︁
𝑎1

𝑝

)︁
, . . . ,

(︁
𝑎𝑘−1

𝑝

)︁)︁
matching any particular sequence (𝜖0, 𝜖1, . . . , 𝜖𝑘−1) ∈ {−1, 1}𝑘 is in the range
1
2𝑘
±𝑂(𝑘𝑝−1/2).

This section considers a related problem. It relies on a new notion that we call
Jacobi imprint. In essence, the imprint is an integer formed of bits representing the
sequence of Jacobi symbols where −1’s are replaced by 1’s and 1’s by 0’s.

Definition 3 (Jacobi Imprint). For an integer 𝑎 and 𝑛 = (𝑛0, . . . , 𝑛𝑘−1) ∈ N𝑘 such
that gcd(𝑎, 𝑛𝑗) = 1 for 0 ≤ 𝑗 ≤ 𝑘 − 1, the Jacobi imprint I𝑛(𝑎) is given by

I𝑛(𝑎) =
𝑘−1∑︁
𝑗=0

{︂
𝑎

𝑛𝑗

}︂
2𝑗 where

{︂
𝑎

𝑛𝑗

}︂
=

1−
(︁

𝑎

𝑛𝑗

)︁
2

.

(At times we will interchangeably use I𝑛(𝑎) to denote the integer I𝑛(𝑎) or its
binary representation.)

3.1 Function ℱ0

Let 𝑞 = (𝑞0, . . . , 𝑞𝑘−1) be a set of 𝑘 distinct (odd) primes and let 𝑄 =
∏︀𝑘−1

𝑗=0 𝑞𝑗 .
Consider the function ℱ0 given by

ℱ0 : D ⊂ Z*
𝑄 → N, 𝑥 ↦→ ℱ0(𝑥) = I𝑞(𝑥) .

We argue that an appropriate selection for the domain of ℱ0 and the number
of primes 𝑞𝑗 ’s turns ℱ0 into a one-way function.

Of course, D cannot be the whole group Z*
𝑄. Otherwise, given a challenge

𝑦 = ℱ0(𝑥̂), an attacker could execute Algorithm 1.
This algorithm yields outputs that are smaller than 𝑄 =

∏︀𝑘−1
𝑗=0 𝑞𝑗 . An obvious way

to prevent an attacker to successfully run Algorithm 1 would be to restrict D to
entries smaller than a given bound 𝐵.
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Algorithm 1: Finding a (large) pre-image

Data: 𝑦 =
∑︀𝑘−1

𝑗=0 𝑦𝑗 2
𝑗 with 𝑦𝑗 ∈ {0, 1} and 𝑞 = (𝑞0, . . . , 𝑞𝑘−1)

Result: 𝑥 ∈ Z*
𝑄 such that ℱ0(𝑥) = 𝑦

for 0 ≤ 𝑗 ≤ 𝑘 − 1 do

𝑟𝑗
$← Z*

𝑞𝑗 such that
{︁
𝑟𝑗
𝑞𝑗

}︁
= 𝑦𝑗

end
𝑥← CRT(𝑟, 𝑞) where 𝑟 = (𝑟0, . . . , 𝑟𝑘−1)

return 𝑥

But there is another way to tackle the problem of finding pre-images to ℱ0.
Let 𝒵 be the set of 𝑘-bit integers in N. Now if we regard an imprint in 𝒵 as an
element of (Z2)

𝑘 (that is, if we look at its binary representation), we see that ℱ0
induces a group homomorphism from (Z*

𝑄, ·) to (𝒵,⊕):

ℱ0(𝑥1 · 𝑥2 mod 𝑄) = ℱ0(𝑥1)⊕ℱ0(𝑥2) , ∀𝑥1, 𝑥2 ∈ Z*
𝑄 .

Therefore, an attacker could generate a set of ℓ “small” primes 𝑝𝑖’s (with 𝑝𝑖 ∤ 𝑄)
and compute the corresponding imprint 𝑧𝑖 = ℱ0(𝑝𝑖), for 1 ≤ 𝑖 ≤ ℓ. It suffices then
for the attacker to use linear algebra modulo 2 (i.e., Gaussian elimination) to find
a subset of the 𝑧𝑖’s having the target imprint 𝑦 as an xor:1

𝑦 = 𝜀1𝑧1 ⊕ · · · ⊕ 𝜀ℓ𝑧ℓ with 𝜀𝑖 ∈ {0, 1} .

A pre-image is given by
𝑥 =

∏︁
1≤𝑖≤ℓ
𝜀𝑖=1

𝑝𝑖 ,

which is valid provided that 𝑥 < 𝐵. This second attack is avoided by limiting D to
primes.

Furthermore, each prime 𝑞𝑗 in 𝑞 imposes a condition on the pre-image. The
birthday paradox suggests to choose the number 𝑘 of primes 𝑞𝑗 ’s to be at least 2𝜅,
where 𝜅 is the security parameter.

All in all, we recommend to select 𝑘 = 2𝜅 and D =
{︀
𝑥 ∈ P | 𝑥 < 𝐵 with 𝐵 ≪

𝑄 where 𝑄 =
∏︀𝑘−1

𝑗=0 𝑞𝑗
}︀
.

1 If a solution 𝜀1, . . . , 𝜀ℓ does not exist, refresh the 𝑝𝑗 ’s as necessary.
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3.2 From ℱ0 to ℱ1

We use function ℱ0 as a starting point to define a (conjectured) trapdoor one-
way function. The resulting function ℱ1 has the extra property that it can be
inverted when it is given a trapdoor as an additional input. To insert a trapdoor,
we replace the primes 𝑞𝑗 ’s with RSA-like moduli of the form 𝑛𝑗 = 𝑝𝑗

2𝑞𝑗 . This does
not affect the output value since I𝑛(𝑥) = I𝑞(𝑥) for all 𝑥 such that gcd(𝑥, 𝑛𝑗) = 1

for 0 ≤ 𝑗 ≤ 𝑘 − 1. The trapdoor is 𝑞.

We conjecture:

Assumption 1. Let 𝜅 denote a security parameter. Let also 𝑘 = 𝑘(𝜅) and ℓ = ℓ(𝜅).
Define D =

{︀
𝑥 ∈ P | 𝑥 < 2𝑘ℓ

}︀
and

ℱ1 : D→ N, 𝑥 ↦→ ℱ1(𝑥) = I𝑛(𝑥)

where 𝑛 = (𝑛0, . . . , 𝑛𝑘−1) is a set of 𝑘 pairwise co-prime moduli of the form
𝑛𝑗 = 𝑝𝑗

2𝑞𝑗 for ℓ-bit primes 𝑝𝑗 and 𝑞𝑗 , 0 ≤ 𝑗 ≤ 𝑘 − 1. For every polynomial-time
algorithm 𝒜, the success probability

Pr
[︀
𝑥̂

$← D;𝒜(ℱ1(𝑥̂)) = 𝑥 | ℱ1(𝑥) = ℱ1(𝑥̂)
]︀

is negligible.

Note that finding a pre-image to 𝑦 = ℱ1(𝑥̂) is easy given the trapdoor 𝑞 =

(𝑞0, . . . , 𝑞𝑘−1):
1. Run Algorithm 1 and obtain 𝑥 such that I𝑞(𝑥) = 𝑦;
2. Update 𝑥 as 𝑥← 𝑥𝑢2 mod 𝑄 with 𝑢 $← Z*

𝑄 until 𝑥 is prime;
3. Return 𝑥.

Clearly, the so-obtained 𝑥 is a valid pre-image: 𝑥 ∈ D and ℱ1(𝑥) = 𝑦.

Remark 1. By definition, the Jacobi imprint I𝑛(𝑥) requires 𝑥 to be co-prime with
𝑛𝑗 for 0 ≤ 𝑗 ≤ 𝑘 − 1. Strictly speaking, the domain D should therefore exclude
the primes 𝑝𝑗 and 𝑞𝑗 . However, since primes 𝑝𝑗 and 𝑞𝑗 are ℓ-bit primes—where
ℓ = ℓ(𝜅)—the probability to output an 𝑥 such that gcd(𝑥, 𝑛𝑗) ̸= 1 for some
0 ≤ 𝑗 ≤ 𝑘 − 1 is negligible when the prime factorization of the 𝑛𝑗 ’s is unknown.

4 Signatures Modulo 𝑝2𝑞

We are now ready to formally describe a first signature scheme. We prove that it
meets the EUF-CMA security level in the random oracle model.
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4.1 Description

Our basic signature scheme is a tuple of algorithms Σ = (KeyGen,Sign,Verify),
which we define as follows:
Key generation The key generation algorithm KeyGen takes as input a security

parameter 1𝜅 and defines parameters 𝑘 and ℓ. It selects a collision-resistant hash
function 𝐻 : {0, 1}* → {0, 1}𝑘. It also produces 𝑘 pairs (𝑝𝑗 , 𝑞𝑗) of ℓ-bit primes
and forms the moduli 𝑛𝑗 = 𝑝𝑗

2𝑞𝑗 . The public parameters are pp = (𝑘, ℓ,𝐻).
The public key is pk = {𝑛𝑗}0≤𝑗≤𝑘−1 while the private key is sk = {𝑞𝑗}0≤𝑗≤𝑘−1.
The outputs are pk and sk (and pp).

Signing The signing algorithm Sign takes as inputs a message 𝑚 ∈ {0, 1}* and
the secret key sk. The signature on message 𝑚 proceeds as follows:

1. Compute 𝐻(𝑚) =
∑︀𝑘−1

𝑗=0 ℎ𝑗 2
𝑗 with ℎ𝑗 ∈ {0, 1};

2. Pick at random 𝑘 ℓ-bit integers 𝑟𝑗 such that{︂
𝑟𝑗

𝑞𝑗

}︂
= ℎ𝑗 , for 0 ≤ 𝑗 ≤ 𝑘 − 1 ;

3. Compute
𝑅 = CRT(𝑟, 𝑞)

with 𝑟 = (𝑟0, . . . , 𝑟𝑘−1) and 𝑞 = (𝑞0, . . . , 𝑞𝑘−1);
4. Set 𝑄 =

∏︀𝑘−1
𝑗=0 𝑞𝑗 and choose at random an integer 𝑢 ∈ Z*

𝑄 such that

𝜎 := 𝑅𝑢2 mod 𝑄 ∈ P ;

5. Return 𝜎.
Verification The verifying algorithm Verify takes as inputs the public key pk, a

message 𝑚, and a signature 𝜎 on message 𝑚. It checks whether

(i) 𝜎 ∈ P , (ii) 𝜎 < 2ℓ𝑘 , (iii) I𝑛(𝜎) = 𝐻(𝑚)

where 𝑛 = (𝑛0, . . . , 𝑛𝑘−1). Verify returns 1 (i.e., the signature is accepted) if
and only if the three conditions above are fulfilled. Otherwise, Verify returns 0.

The next proposition shows that the signature scheme is correct: for (pk, sk) ←
KeyGen(1𝜅) and any message 𝑚 ∈ {0, 1}*, Verify

(︀
pk,𝑚, Sign(𝑚, sk)

)︀
= 1.

Proposition 1 (Correctness). Signature scheme Σ is correct.

Proof. Let ({𝑛𝑗}, {𝑞𝑗}) and 𝜎 the respective outputs of KeyGen and Sign, with
message 𝑚 as input. By construction, 𝜎 is prime and 𝜎 = 𝑅𝑢2 mod 𝑄 < 2ℓ𝑘.
Moreover, since 𝜎 ≡ 𝑟𝑗𝑢2 (mod 𝑞𝑗) (0 ≤ 𝑗 ≤ 𝑘 − 1), it follows that

I𝑞(𝜎) =
𝑘−1∑︁
𝑗=0

{︁
𝑟𝑗𝑢

2

𝑞𝑗

}︁
2𝑗 =

𝑘−1∑︁
𝑗=0

{︁
𝑟𝑗
𝑞𝑗

}︁
2𝑗 .
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Finally, since 𝑛𝑗 = 𝑝𝑗
2𝑞𝑗 , we have

{︁
𝑟𝑗
𝑛𝑗

}︁
=

{︁
𝑟𝑗
𝑞𝑗

}︁
, and so I𝑛(𝜎) = I𝑞(𝜎) =

𝐻(𝑚).

4.2 Security Proof

Theorem 1. Signature scheme Σ is EUF-CMA secure assuming the hardness of
inverting ℱ1, in the random oracle model.

Proof. The security proof is by contradiction. Suppose we are given as a challenge
an output 𝑠 of the function ℱ1. We assume that there exists a polynomial-time
adversary 𝒜 that is able to produce an existential signature forgery with non-
negligible success probability. Adversary 𝒜 is allowed to make 𝑞𝐻 queries to
random oracle 𝐻 and 𝑞𝑠 queries to signing oracle Sign. We then use 𝒜’s forgery to
invert ℱ1; i.e., to find a pre-image to 𝑠.

Specifically, suppose that the received challenge is the 𝑘-bit integer

𝑠← ℱ1(𝑥) = I𝑛(𝑥) with 𝑛 = (𝑛0, . . . , 𝑛𝑘−1)

for moduli 𝑛𝑗 of the form 𝑛𝑗 = 𝑝𝑗
2𝑞𝑗 where 𝑝𝑗 ’s and 𝑞𝑗 ’s are ℓ-bit primes; 0 ≤ 𝑗 ≤

𝑘 − 1. The simulator sets the public key to pk = {𝑛𝑗}0≤𝑗≤𝑘−1. It also selects a
collision-resistant hash function 𝐻 mapping to {0, 1}𝑘. The public key pk as well
as public parameters pp := (𝑘, ℓ,𝐻) are given to 𝒜.

The simulator needs to answer the oracle queries made by 𝒜. It maintains
a history list of tuples (𝑚𝑖, h𝑖, 𝜎𝑖), Hist[𝐻], that keeps track of the hash queries;
Hist[𝐻] is initialized to ∅. It also maintains a counter 𝑖 initialized to 0 and chooses
at random an index 𝑖* ∈ [1, . . . , 𝑞𝐻 ].
Answering hash queries When 𝒜 submits a message 𝑚 to 𝐻, the simulator

checks whether 𝑚 was already queried:
– If 𝑚 /∈ Hist[𝐻] then 𝑖 is incremented: 𝑖← 𝑖+ 1. Next, the simulator sets

𝑚𝑖 ← 𝑚 and depending on the value of 𝑖:
– if 𝑖 = 𝑖*, it sets h𝑖 ← 𝑠 and 𝜎𝑖 ← ⊥;
– if 𝑖 ̸= 𝑖*, it generates a random ℓ𝑘-bit prime 𝜎𝑖 and sets h𝑖 ← I𝑛(𝜎𝑖).
Tuple (𝑚𝑖, h𝑖, 𝜎𝑖) is appended to Hist[𝐻]: Hist[𝐻]← Hist[𝐻]∪ (𝑚𝑖, h𝑖, 𝜎𝑖).

– If 𝑚 ∈ Hist[𝐻], the simulator finds the index 𝑖 such that 𝑚 = 𝑚𝑖 and
recovers the corresponding value h𝑖.

The simulator returns h𝑖 as the hash value of input message 𝑚.
Answering signature queries Without loss of generality, we assume that when
𝒜 calls signing oracle Sign with a message 𝑚, it has already submitted 𝑚

to hash oracle 𝐻 (observe that the simulator can always call internally 𝐻).
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Therefore, there exists an index 𝑖 such that 𝑚 = 𝑚𝑖 in Hist[𝐻]. The simulator
recovers the corresponding value for 𝜎𝑖. There are two cases:
– If 𝜎𝑖 ≠ ⊥ then the simulator returns 𝜎𝑖 as a valid signature on input

message 𝑚;
– Otherwise the simulator fails and stops.

The number of queries to the hash oracle being polynomial, with non-negligible
probability, the adversary will return a signature forgery on its 𝑖*-th query to 𝐻;
i.e., on message 𝑚𝑖* . Letting 𝜎𝑖* the corresponding signature returned by 𝒜, we
see that 𝜎𝑖* is a solution to the challenge since I𝑛(𝜎𝑖*) = 𝐻(𝑚𝑖*) = 𝑠.

4.3 Toy Example (𝑘 = 8)

Picking the secret primes

𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7

𝑝𝑗 59069 54139 52639 53813 49871 41269 53653 40361

𝑞𝑗 62989 32917 36583 48383 36653 34963 52517 38971

we have the public moduli

𝑛0 = 219777865328629 𝑛1 = 096480757993357 𝑛2 = 101366529455143

𝑛3 = 140109376837127 𝑛4 = 091160286242573 𝑛5 = 059546546811643

𝑛6 = 151177768427453 𝑛7 = 063484161219691

and the value 𝑄 =
∏︀7

𝑖=0 𝑞𝑖 = 9625354820834308444301890854766785161.

Consider a message whose digest is ℎ = (ℎ0, . . . , ℎ7) and draw 𝑟𝑗 ’s as:

𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6 𝑗 = 7

ℎ𝑗 1 0 1 1 0 1 1 0

𝑟𝑗 64863 58999 47120 50684 37458 57079 43135 56942

We get CRT(𝑟, 𝑞) = 1395786251559231878789764535858641198.
By selecting 𝑢 = 2152266820709866295140077504687803459, we obtain the signa-
ture

𝜎 = 1137542561586761230770585345256092841 ∈ P .
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5 Generalized Signatures

The Legendre symbol tells whether an integer is a square modulo a prime 𝑝. Given
an integer 𝑎 and an odd prime 𝑝, if 𝑝 ∤ 𝑎, there exists a unique integer 𝑗 modulo 2

such that 𝑎(𝑝−1)/2 ≡ (−1)𝑗 (mod 𝑝). To obtain the analogue to a higher power 𝑟,
the rational integers need to be extended so that they include an 𝑟th root of unity,
namely 𝑒2𝜋𝑖/𝑟.

5.1 Cyclotomic Integers and Higher-Order Residuosity

We start by reviewing some classical results on cyclotomic fields. We refer the
reader to [19] and [45] for further introductory background.

Fix 𝜁 := 𝜁𝑟 a primitive 𝑟th root of unity; i.e., 𝜁 is a root of 𝑋𝑟−1 and 𝑋𝑠 ̸= 1 for
0 < 𝑠 < 𝑟. Adjoining 𝜁 to the field Q of rationals defines the cyclotomic field Q(𝜁).
It is the splitting field of 𝑋𝑟−1; its Galois group Gal(Q(𝜁)/Q) is isomorphic to Z*

𝑟 ,
with 𝑘 mod 𝑟 corresponding to the map 𝜎𝑘 : 𝜁 ↦→ 𝜁𝑘; see [19, Proposition 13.2.1] or
[45, Theorem 2.5]. The ring of integers of Q(𝜁) is Z[𝜁] ∼= Z[𝑋]/(Φ𝑟) where Φ𝑟 is
the 𝑟th cyclotomic polynomial ; see [45, Theorem 2.6].

The elements 𝛼 of Z[𝜁] are written as

𝛼 =
∑︁

0≤𝑗<𝜙(𝑟)

𝑎𝑗 𝜁
𝑗 with 𝑎𝑗 ∈ Z

where 𝜙 denotes Euler’s totient function. The norm of 𝛼 ∈ Z[𝜁] is the rational
integer given by N(𝛼) =

∏︀
𝑘∈Z*

𝑟
𝜎𝑘(𝛼). We assume that Z[𝜁] is norm-Euclidean.2

The elements of norm ±1 in Z[𝜁] are called units. Two elements 𝛼, 𝛽 ∈ Z[𝜁]
that are equal up to multiplication by a unit 𝜐 ∈ Z[𝜁] (i.e., 𝛼 = 𝜐𝛽) are said to be
associates; we write 𝛼 ∼ 𝛽. A non-unit element 𝜋 ∈ Z[𝜁] is a prime in Z[𝜁] if, for
any 𝛼, 𝛽 ∈ Z[𝜁], 𝜋 | 𝛼𝛽 implies 𝜋 | 𝛼 or 𝜋 | 𝛽. If 𝑟 is a prime power (i.e., 𝑟 = 𝑞ℓ for
some rational prime 𝑞 and ℓ ≥ 1) then (1− 𝜁) is a prime in Z[𝜁] and N(1− 𝜁) = 𝑞;
otherwise, (1− 𝜁) is a unit in Z[𝜁].

Let 𝜋 be a prime in Z[𝜁], with gcd(N(𝜋), 𝑟) = 1. For every 𝛼 ∈ Z[𝜁] such that
𝜋 ∤ 𝛼, we have 𝛼N(𝜋)−1 ≡ 1 (mod 𝜋). Further, ⟨𝜁⟩ is a subgroup of order 𝑟 of
(Z[𝜁]/(𝜋))*, it follows that 𝑟 | (N(𝜋)− 1) and

𝛼
N(𝜋)−1

𝑟 ≡ 𝜁𝑗 (mod 𝜋) for some 𝑗 ∈ Z𝑟 .

2 A ring 𝑅 is said norm-Euclidean or Euclidean with respect to the norm N if for every
𝛼, 𝛽 ∈ 𝑅, 𝛽 ̸= 0, there exist 𝜂, 𝜌 ∈ 𝑅 such that 𝛼 = 𝛽 𝜂 + 𝜌 and N(𝜌) < N(𝛽).
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This defines the 𝑟th-power residue symbol.

Definition 4. Fix 𝜁 a primitive 𝑟th root of unity. Let 𝛼, 𝜋 ∈ Z[𝜁] with 𝜋 prime and
gcd(N(𝜋), 𝑟) = 1. The 𝑟th-power residue symbol is defined by[︂

𝛼

𝜋

]︂
𝑟

=

{︃
𝛼(N(𝜋)−1)/𝑟 mod 𝜋 if 𝜋 ∤ 𝛼 ,
0 otherwise .

Let 𝛼, 𝛽, 𝜋 ∈ Z[𝜁] with 𝜋 prime and gcd(N(𝜋), 𝑟) = 1. It is easily verified from the
definition that the following properties are satisfied:[︂

𝛼𝛽

𝜋

]︂
𝑟

=

[︂
𝛼

𝜋

]︂
𝑟

[︂
𝛽

𝜋

]︂
𝑟

,

[︂
𝛼

𝜋

]︂
𝑟

=

[︂
𝛼 mod 𝜋

𝜋

]︂
𝑟

.

Furthermore, in a way similar to the Jacobi symbol for quadratic residuosity,
the 𝑟th-power residue symbol naturally generalizes.

Definition 5. Fix 𝜁 a primitive 𝑟th root of unity. Let 𝛼, 𝜆 ∈ Z[𝜁] with 𝜆 non-unit
and gcd(N(𝜆), 𝑟) = 1. Then, writing 𝜆 =

∏︀
𝑗 𝜋𝑗

𝑒𝑗 for primes 𝜋𝑗 in Z[𝜁], if 𝛼 and 𝜆

are co-prime, the symbol
[︁
𝛼

𝜆

]︁
𝑟

is defined by

[︂
𝛼

𝜆

]︂
𝑟

=
∏︁
𝑗

[︂
𝛼

𝜋𝑗

]︂
𝑟

𝑒𝑗

.

Moreover,
[︁
𝛼

𝜐

]︁
𝑟

= 1 for every unit 𝜐 ∈ Z[𝜁].

The notion of Jacobi imprint generalizes to higher powers. To ease the notation,
we extend the brace symbol as follows:{︂

𝛼

𝜆

}︂
𝑟

= 𝑗 with 𝑗 ∈ Z𝑟

where
{︁
𝛼

𝜆

}︁
𝑟

= 𝑗 if and only if
[︁
𝛼

𝜆

]︁
𝑟

= 𝜁𝑗 . Note that Definition 3 corresponds to the
case 𝑟 = 2.

Definition 6 (𝑟th-order Imprint). For an integer 𝛼 ∈ Z[𝜁] and a vector 𝜆 =

(𝜆0, . . . , 𝜆𝑘−1) ∈ Z[𝜁]𝑘, such that 𝛼 and 𝜆𝑗 (with 0 ≤ 𝑗 ≤ 𝑘 − 1) are co-prime, the
𝑟th-order imprint of 𝛼 w.r.t. 𝜆 is the integer I(𝑟)

𝜆 (𝛼) ∈ Z given by

I(𝑟)

𝜆 (𝛼) =

𝑘−1∑︁
𝑗=0

{︂
𝛼

𝜆𝑗

}︂
𝑟

𝑟𝑗 .
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5.2 Parameter Selection

As discussed in the introduction, the main threat for factoring-related cryptosystems
comes from NFS and its variants. The next table lists different types of security
level and the commonly-accepted corresponding size for the modulus. See e.g. [3].

Tab. 1: Key lengths and bit security.

Type
Bit-security Modulus

level (bit size)
Legacy 80 1024

Basic 112 2048

Normal 128 3072

High 192 7680

Very high 256 15360

The current state of affairs teaches that moduli could be selected of the form
𝑝𝑗

𝑟𝑞𝑗 with 𝑟 ≥ 2 chosen to have a balanced resistance against both NFS-type and
ECM-type factoring algorithms. Given a modulus whose length is chosen according
to Table 1, a bound for the number of factors that may be allowed is derived
in [22, Section 4]. This suggests to select 𝑟 in the range [2, . . . , 5], depending on
the security level.

Remark 2. If 𝜁𝑟 is an 𝑟th primitive root of unity, the ring Z[𝜁𝑟] is not necessarily
norm-Euclidean. But for 𝑟 ∈ {2, 3, 4, 5}, the rings Z[𝜁𝑟] are known to be norm-
Euclidean [21, §8]; see also [26].

Each possible value for 𝑟 gives rise to a signature scheme. Of particular interest
are the following new species in the signature zoo:

Quadratapus3 𝑟 = 2 legacy security;
Cubapus-112 𝑟 = 3 basic security;
Cubapus-128 𝑟 = 3 normal security;
Quartapus 𝑟 = 4 high security;
Pentapus 𝑟 = 5 very high security.

3 Quadratapus is an endangered species.
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6 Quartapus

The 𝑝2𝑞 signature scheme given in Section 4 extends to any value of 𝑟 > 2 (provided
that Z[𝜁𝑟] is norm-Euclidean). As an illustration, we detail the Quartapus signature
scheme, which is an adaptation to the case 𝑟 = 4.

Throughout this section, we let 𝜁 := 𝜁4 = 𝑖 denote a primitive 4th root of unity.
The Galois group of Q(𝜁)/Q contains the two automorphisms 𝜎𝑘 : 𝜁 ↦→ 𝜁𝑘 with
𝑘 ∈ {1, 2}. For an element 𝛼 ∈ Z[𝜁], we write 𝛼𝑘 = 𝜎𝑘(𝛼). The norm of 𝛼 is given
by N(𝛼) = 𝛼1𝛼2.

6.1 Description

The Quartapus signature scheme, (KeyGen,Sign,Verify), is defined as follows.
Key generation KeyGen takes as input a security parameter 1𝜅 and defines

parameters 𝑘 and ℓ. It selects a collision-resistant hash function 𝐻 : {0, 1}* →
(Z4)

𝑘. It also produces 𝑘 pairs (𝜋𝑗 , 𝜓𝑗) of primes in Z[𝜁], where N(𝜋𝑗) and N(𝜓𝑗)

are ℓ-bit long, and forms the moduli 𝜈𝑗 = 𝜋𝑗
4𝜓𝑗 .The outputs are pp = (𝑘, ℓ,𝐻),

pk = {𝜈𝑗}0≤𝑗≤𝑘−1, and sk = {𝜓𝑗}0≤𝑗≤𝑘−1.
Signing On input a message 𝑚 ∈ {0, 1}* and sk, Sign does the following:

1. Compute 𝐻(𝑚) =
∑︀𝑘−1

𝑗=0 ℎ𝑗 4
𝑗 with ℎ𝑗 ∈ Z4;

2. Pick at random 𝑘 integers 𝜌𝑗 ∈ Z[𝜁] of ℓ-bit norm such that{︂
𝜌𝑗

𝜓𝑗

}︂
= ℎ𝑗 , for 0 ≤ 𝑗 ≤ 𝑘 − 1 ;

3. Compute
𝜚 = CRT(𝜌,𝜓)

with 𝜌 = (𝜌0, . . . , 𝜌𝑘−1) and 𝜓 = (𝜓0, . . . , 𝜓𝑘−1);
4. Set Ψ =

∏︀𝑘−1
𝑗=0 𝜓𝑗 and choose at random an integer 𝜐 ∈ (Z[𝜁]/(Ψ))* such

that
𝜎 := 𝜚 𝜐4 mod Ψ is prime in Z[𝜁] ;

5. Return 𝜎.
Verification On input 𝜎, 𝑚 and pk, Verify checks whether

(i) 𝜎 is prime , (ii) N(𝜎) < 2ℓ𝑘 , (iii) I(4)
𝜈 (𝜎) = 𝐻(𝑚)

and, if so, accepts the signature.
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Remark 3. The primes 𝜋𝑗 ’s and 𝜓𝑗 ’s must be chosen of norm of ℓ bits for an ℓ sized
for the factoring problem over the rational integers. Indeed, suppose an attacker
is given as a challenge 𝜈 = 𝜋𝜓, a product of two primes in Z[𝜁]. The goal of the
attacker is to recover 𝜋 and 𝜓.

The norm of 𝜈 satisfies N(𝜈) = N(𝜋)N(𝜓) := 𝑝𝑞 for two ℓ-bit rational primes
𝑝, 𝑞 ≡ 1 (mod 4). If ℓ were chosen too small so that the problem of factoring the
product of two rational ℓ-bit primes becomes feasible, the attacker could factor
N(𝜈) and recover 𝑝 and 𝑞. Once 𝑝 and 𝑞 are found, its remaining task is to find
𝜋, 𝜓 ∈ Z[𝜁] with N(𝜋) = 𝑝 and N(𝜓) = 𝑞. This can be efficiently achieved by
generalizing Cornacchia’s algorithm [6, Algorithm 1.5.2] to fourth roots, as done
in [8, § 1.2] for cubic roots. The first step is to solve for 𝑟 over F*

𝑝 the equation
𝑟2 + 1 = 0 (mod 𝑝). Next, to consider the integer 𝜌 := 𝑟 − 𝜁 ∈ Z[𝜁], whose norm is
a multiple of 𝑝. Hence, the computation of gcd(𝜌, 𝑝) yields 𝜋 ∈ Z[𝜁]—remember
that Z[𝜁] is norm-Euclidean, and 𝑝 = 𝜋𝜋2 where 𝜋2 = 𝜎2(𝜋). And similarly for 𝑞.

6.2 Evaluating Quartic Residue Symbols

Quartapus requires the evaluation of the 4th-power residue symbol. We refer
to [46, 8] for efficient implementations.

A generic algorithm for computing the 𝑟th-power residue symbol for any prime
𝑟 ≤ 11 is described in [5, Section 7]. The case 𝑟 = 3 is discussed in [47, 8, 39] and
the case 𝑟 = 5 in [39].

7 Concluding Remarks

In this paper, we have introduced a formal definition and construction of a new
family of one-way functions and signature schemes. They are related to the hardness
of factoring moduli of the form 𝑛 = 𝑝𝑟𝑞. Since our constructions rely on newly
introduced assumptions, further cryptanalytic efforts are demanded in order to get
more confidence about their exact security.

Acknowledgment: We are grateful to Dan Bernstein, Dan Boneh, and Antoine Joux
for comments and discussions on the ECM factoring method.
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