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Abstract. Recent attacks show how an unskilled implementation of el-
liptic curve cryptosystems may reveal the involved secrets from a sin-
gle execution of the algorithm. Most attacks exploit the property that
addition and doubling on elliptic curves are different operations and so
can be distinguished from side-channel analysis. Known countermeasures
suggest to add dummy operations or to use specific parameterizations.
This is at the expense of running time or interoperability.
This paper shows how to rewrite the addition on the general Weierstraß
form of elliptic curves so that the same formulæ apply equally to add two
different points or to double a point. It also shows how to generalize to
the Weierstraß form a protection method previously applied to a specific
form of elliptic curves due to Montgomery.
The two proposed methods offer generic solutions for preventing side-
channel attacks. In particular, they apply to all the elliptic curves rec-
ommended by the standards.

Keywords. Elliptic curves, Weierstraß form, digital signature standard, side
channel attacks, SPA.

1 Introduction

Elliptic curve cryptosystems become more and more popular. With much shorter
key lengths they (presumably) offer the same level of security than older cryp-
tosystems. This advantage is especially attractive for small cryptographic de-
vices, like the smart cards.

In the last years, a new class of attacks was exploited to retrieve some se-
cret information embedded in a cryptographic device: the so-called side-channel



2 Éric Brier and Marc Joye

attacks [Koc96,KJJ99]. By monitoring some side-channel information (e.g., the
power consumption) it is possible, in some cases, to deduce the inner workings
of an (unprotected) crypto-algorithm and thereby to recover the secret keys. To
counteract these attacks, a variety of countermeasures have been proposed (e.g.,
see [KJJ99,Cor99,LD99,OS00,JQ01,LS01,JT01,Möl01]).

This paper only deals with simple side-channel analysis (e.g., SPA), that is,
side-channel analysis from a single execution of the crypto-algorithm. The more
sophisticated differential side-analysis (e.g., DPA) plays the algorithm several
times and handles the results thanks to statistical tools. This second type of
attacks is not really a threat for elliptic curve cryptography since they are easily
avoided by randomizing the inputs [Cor99,JT01].

Simple side-channel analysis is made easier for elliptic curve algorithms be-
cause the operations of doubling and addition of points are intrinsically differ-
ent. Efficient countermeasures are known but they only apply to specific elliptic
curves. Although one can always choose of an elliptic curve of the required
form, it is very likely that people will select elliptic curves recommended in a
standard. For example, over a large prime field, the National Institute of Stan-
dards and Technology (NIST) [NIST00] (see also [SECG00]) recommends to
use elliptic curves of prime order whereas the order of the curves suggested
in [OS00,JQ01,LS01] is always divisible by a small factor.

The rest of this paper is organized as follows. In the next section, we review
SPA-like attacks. In Section 3 and 4, we present two different approaches to
prevent these attacks for elliptic curve cryptosystems using the (fully general)
Weierstraß parameterization. Finally, we conclude in Section 5. (An introduction
to elliptic curves may be found in appendix.)

2 SPA-like Attacks

The most commonly used algorithm for computing Q = kP on an elliptic curve is
the double-and-add algorithm, that is, the additively written square-and-multiply

algorithm [Knu81, § 4.6.3].1

Suppose that the doubling of a point and the addition of two different
points are implemented with different formulæ, these two operations may then
be distinguished by simple side-channel analysis, e.g., by simple power anal-
ysis (SPA) [KJJ99]. When the power trace shows a doubling followed by an
addition, the current bit, say ki, is equal to 1; ki = 0 otherwise.

The usual way to prevent simple side-channel attacks consists in always re-
peating the same pattern of instructions, whatever the processed data. This can
be done by

– performing some dummy operations [Cor99];

1 Noting that the computation of the inverse of an point is virtually free, we can
advantageously use a NAF representation for k —that is, k = (k′

l, . . . , k
′

0) with
k′

i ∈ {−1, 0, 1} and k′

i·k
′

i+1 = 0— and replace Step 4 in the double-and-add algorithm
by R0 ← R0 + k′

iP. The expected speedup factor is 11.11% [MO90].
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Input: P, k = (kl−1, . . . , k0)2
Output: Q = kP

1. R0 = P

2. for i = l − 2 downto 0 do
3. R0 ← 2R0

4. if (ki 6= 0) then R0 ← R0 + P

return (Q = R0)

Fig. 1. Double-and-add algorithm for computing Q = kP.

– using an alternate parameterization for the elliptic curve [LS01,JQ01];
– using an algorithm already satisfying this property [LD99,OS00,Möl01].

In [Cor99], it is suggested to use the double-and-add-always variant of the
double-and-add algorithm (Fig. 1): a dummy addition is performed when ki = 0.
The drawback in this variant is that it penalizes the running time.

There are other algorithms towards SPA-resistance (e.g., [CJ01]) but they
require the elementary operations —in our case the doubling and the addition
of points— to be indistinguishable. To this purpose, several authors suggested
to use alternate parameterizations for the elliptic curves. In [LS01], Liardet and
Smart represents points with the Jacobi form as the intersection of two quadrics
in P

3. In [JQ01], Joye and Quisquater suggest to use the Hessian form. Unfor-
tunately, contrary to the Weierstraß form, these parameterizations are not fully
general. The Jacobi form has always a point of order 4 and the Hessian form a
point of order 3. This implies that the cardinality of the corresponding elliptic
curve is a multiple of 4 and 3, respectively. On the other hand, standard bod-
ies [NIST00] or companies [SECG00] recommend elliptic curves that do not all
fit in these settings. For instance, they recommend to use several elliptic curves
of prime cardinality over a large prime field. Rather than investigating specific
forms for parameterizing an elliptic curve, we show in the next section how to
perform —with the same formula— a doubling or an addition with the general
Weierstraß parameterization.

The third approach for defeating SPA-like attacks is an application of Mont-
gomery’s binary technique [Mon87] (see also [Möl01] when memory constraints
are not a concern). For elliptic curves over binary fields, the algorithm is de-
scribed in [LD99]. Over large prime fields, the algorithm is described in [OS00].
This latter algorithm is unfortunately limited to the Montgomery parameteriza-
tion (that is, elliptic curves with a point of order 2). We generalize it in Section 4
so that it works with the general Weierstraß parameterization.

3 Revisiting the Addition Formulæ

As given in textbooks (see also Appendices A.1 and A.3), the formulæ for adding
or doubling points on a Weierstraß elliptic curve are different. The discrepancy
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comes from the geometrical interpretation of the addition law on elliptic curves,
the so-called chord-and-tangent rule (see Fig. 2).

Let ` be the line passing through P and Q (tangent at the curve E if P = Q)
and let T be the third point of intersection of ` with E. If `′ is the line connecting
P and O then P + Q is the point such that E intersects E at T, O and P + Q.

`

P Q

`′

O

T

P + Q

x

y

Fig. 2. Chord-and-tangent rule.

It is however possible to write the slope of line `, λ, so that its expression
remains valid for the addition or the doubling of points, which consequently
unify the addition formulæ. This is explicited in the next proposition.

Proposition 1. Let E be the elliptic curve over a field K, given by the equation

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. Let also P = (x1, y1) and

Q = (x2, y2) ∈ E(K) \ {O} with y(P) 6= y(−Q). Then P + Q = (x3, y3) where

x3 = λ2 + a1λ − a2 − x1 − x2, y3 = −(λ + a1)x3 − µ − a3 with

λ =
x2

1 + x1x2 + x2
2 + a2x1 + a2x2 + a4 − a1y1

y1 + y2 + a1x2 + a3

and µ = y1 − λx1.

Proof. The condition y(P) 6= y(−Q) is equivalent to y1 6= −y2 − a1x2 − a3.
Starting from the definition of λ when P 6= Q (see Eq. (13) in Appendix A.1),
we obtain

λ = y1−y2

x1−x2
= y1−y2

x1−x2
· y1−(−y2−a1x2−a3)

y1−(−y2−a1x2−a3)

=
y2

1
+a1x2y1+a3y1−y2

2
−a1x2y2−a3y2

(x1−x2)(y1+y2+a1x2+a3)

=
(y2

1
+a1x1y1+a3y1)−(y2

2
+a1x2y2+a3y2)+a1x2y1−a1x1y1

(x1−x2)(y1+y2+a1x2+a3)

=
(x3

1
+a2x2

1
+a4x1+a6)−(x3

2
+a2x2

2
+a4x2+a6)−a1y1(x1−x2)

(x1−x2)(y1+y2+a1x2+a3)

=
x2

1
+x1x2+x2

2
+a2x1+a2x2+a4−a1y1

y1+y2+a1x2+a3

.
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We see that if we replace x2 by x1 and y2 by y1 (i.e., if we assume P = Q), the

above formula for λ yields λ =
3x2

1
+2a2x1+a4−a1y1

2y1+a1x1+a3
, that is, the λ for the doubling

(again see Eq. (13) in Appendix A.1). ut

The above proposition can be particularized to the simplified Weierstraß
equations (see Appendix A.3), depending on the field of definition.

Corollary 1. Let K be a field of characteristic CharK 6= 2, 3, and let E be the

elliptic curve given by the equation E/K : y2 = x3 + ax + b. Then for any P =
(x1, y1) and Q = (x2, y2) ∈ E(K)\{O} with y1 6= −y2, we have P+Q = (x3, y3)
where

x3 =
(x2

1 + x1x2 + x2
2 + a

y1 + y2

)2

− x1 − x2 (1)

and

y3 =
(x2

1 + x1x2 + x2
2 + a

y1 + y2

)

(x1 − x3) − y1 . (2)

ut

Corollary 2. Let K be a field of characteristic CharK = 2, and let E be the

non-supersingular elliptic curve given by the equation E/K : y2+xy = x3+ax2+b.
Then for any P = (x1, y1) and Q = (x2, y2) ∈ E(K) \ {O} with y1 6= y2 + x2,

we have P + Q = (x3, y3) where

x3 =
(x2

1 + x1x2 + x2
2 + ax1 + ax2 + y1

y1 + y2 + x2

)2

+

(x2
1 + x1x2 + x2

2 + ax1 + ax2 + y1

y1 + y2 + x2

)

+ a + x1 + x2

(3)

and

y3 =
(x2

1 + x1x2 + x2
2 + ax1 + ax2 + y1

y1 + y2 + x2

)

(x1 + x3) + x3 + y1 . (4)

ut

Over a field K of characteristic CharK 6= 2, 3, remarking that x2
1 + x1x2 +

x2
2 = (x1 + x2)

2 − x1x2, our formulæ (Eqs. (1) and (2)) require 1 inversion and
5 multiplications for adding two points. Over a field K of characteristic CharK =
2, our formulæ (Eqs. (3) and (4)) require 1 inversion and 3 multiplications plus
1 multiplication by a constant for adding two points (we neglect the cost of a
squaring).

When CharK 6= 2, 3, projective coordinates are preferred [DMPW98]. (See
Appendix A.2 for a short introduction to projective coordinates.)

We now give the projective (homogeneous) version of Eqs. (1) and (2). Write

λ =
x2

1
+x1x2+x2

2
+a

y1+y2
= (x1+x2)

2
−x1x2+a

y1+y2
. Owing to the symmetry of λ, we may

write from Eq. (2), y3 = λ(x2−x3)−y2, since P+Q = Q+P, and consequently
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we have 2y3 = λ(x1 + x2 − 2x3)− (y1 + y2). Setting xi = Xi

Zi

and yi = Yi

Zi

, we so
obtain after a few algebra







X3 = 2FW
Y3 = R(G − 2W ) − L2

Z3 = 2F 3
(5)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 + U2,
M = S1 + S2, R = T 2 − U1U2 + aZ2, F = ZM , L = MF , G = TL, and
W = R2 −G. Therefore, adding two points with our unified formulæ require 17
multiplications plus 1 multiplication by constant. When a = −1 then we may
write R = (T − Z)(T + Z) − U1U2 and the number of multiplications decreases
to 16.

4 Generalizing Montgomery’s Technique

In [Mon87], Montgomery developed an original technique to compute multiples
of points on an elliptic curve. His technique is based on the fact that the sum
of two points whose difference is a known point can be computed without the
y-coordinate of the two points.

Input: P, k = (kl−1, . . . , k0)2
Output: x(kP)

1. R0 = P; R1 = 2P
2. for i = l − 2 downto 0 do
3. if (ki = 0) then
4. x(R1)← x(R0 + R1); x(R0)← x(2R0)
5. else [if (ki = 1)]
6. x(R0)← x(R0 + R1); x(R1)← x(2R1)

return (x(R0))

Fig. 3. Montgomery’s technique for computing x(kP).

(Observe that the difference R1−R0 remains invariant throughout the algorithm:
R1 −R0 = P.)

For sake of efficiency, Montgomery restricted his study to elliptic curves of
the form by2 = x3 + ax2 + x over a field K of characteristic 6= 2, 3. The next
proposition gives the corresponding formulæ in the general case. The formulæ
over a field of characteristic 2 are given in [LD99, Lemmas 2 and 3].

Proposition 2. Let K be a field of characteristic CharK 6= 2, 3, and let E be the

elliptic curve given by the equation E/K : y2 = x3 + ax + b. Let also P = (x1, y1)
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and Q = (x2, y2) ∈ E(K) \ {O} with P 6= ±Q. Given the point P − Q = (x, y),
the x-coordinate of P + Q satisfies

x(P + Q) =
−4b(x1 + x2) + (x1x2 − a)2

x(x1 − x2)2
. (6)

Furthermore, if y1 6= 0 then the x-coordinate of 2P satisfies

x(2P) =
(x1

2 − a)2 − 8bx1

4(x1
3 + ax1 + b)

. (7)

Proof. From Eq. (16) (in Appendix A.3), letting x3 the x-coordinate of P + Q,
we have

x3(x1 − x2)
2 = (y1 − y2)

2 − (x1 + x2)(x1 − x2)
2

= (y1
2 + y2

2 − 2y1y2) − (x1
3 + x2

3 − x1
2 x2 − x1x2

2)

= −2y1y2 + 2b + (a + x1x2)(x1 + x2) .

Similarly, the x-coordinate of P − Q satisfies x(x1 − x2)
2 = 2y1y2 + 2b + (a +

x1x2)(x1 + x2). Now by multiplying the two equations, we obtain

x3 · x(x1 − x2)
4 = −4y1

2 y2
2 + [2b + (a + x1x2)(x1 + x2)]

2

= −4(x1
3 + ax1 + b)(x2

3 + ax2 + b) +

[2b + (a + x1x2)(x1 + x2)]
2

= [−4b(x1 + x2) + (x1x2 − a)2](x1 − x2)
2

which, dividing through by (x1 − x2)
2, yields the desired result.

When y1 6= 0 (i.e., when 2P 6= O), we have from Eq. (16) (in appendix) that

x(2P) = (3x1
2+a)2

4y1
2 − 2x1 = (x1

2
−a)2−8bx1

4(x1
3+ax1+b) . ut

Another useful feature of Montgomery’s technique is that the y-coordinate
of a point P can be deduced from its x-coordinate, the x-coordinate of another
point Q and the coordinates of the point P − Q. This is explicited in the next
proposition.

Proposition 3. Let K be a field of characteristic CharK 6= 2, 3, and let E be the

elliptic curve given by the equation E/K : y2 = x3 + ax + b. Let also P = (x1, y1)
and Q = (x2, y2) ∈ E(K) \ {O} with P 6= Q. Given the point P−Q = (x, y), if

y 6= 0 then the y-coordinate of P satisfies

y(P) = y1 =
2b + (a + xx1)(x + x1) − x2(x − x1)

2

2y
. (8)

Proof. Define D = P−Q = (x, y). Since Q = P + D = (x2, y2), we obtain from

Eq. (16) (in appendix) x2 =
(

y1−y
x1−x

)2

− x1 − x = −2yy1+2b+(a+xx1)(x+x1)
(x1−x)2 , which

concludes the proof, multiplying through by (x1 − x)2. ut
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Assume we are working on an elliptic curve over a field K of characteristic
different from 2 or 3. We refer the reader to [LD99] for a field of characteristic 2.
Within projective (homogeneous) coordinates, Equation (6) becomes

{

X(P + Q) = −4bZ1Z2(X1Z2 + X2Z1) + (X1X2 − aZ1Z2)
2 ,

Z(P + Q) = x · (X1Z2 − X2Z1)
2 .

(9)

Hence, the addition of two points requires 7 multiplications plus 3 multiplications
by a constant.

The formulæ to double a point within homogeneous projective coordinates
are obtained similarly from Eq. (7). We get

{

X(2P) = (X1
2 − aZ1

2)2 − 8bX1Z1
3 ,

Z(2P) = 4Z1(X1
3 + aX1Z1

2 + bZ1
3) .

(10)

This can be evaluated with 7 multiplications plus 2 multiplications by a constant.
Consequently, the whole protected algorithm of Fig. 3 requires roughly 14l

multiplications, 5l multiplications by a constant and 1 inversion for computing
x(kP), where l is the bit-length of k. This is more than in [OS00] but our
method does not require specific curves. Note also that, by Proposition 3, the
y-coordinate of Q = kP can be recovered from x(R0) = x(Q), x(R1) and P.

5 Conclusion

This paper described two alternative approaches in the development of counter-
measures against simple side-channel attacks. The main merits of the proposed
methods is that they are not specific to a particular class of elliptic curves. In
particular, they apply to all the elliptic curves recommended in the standards.
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and C. Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 305–
314. Springer-Verlag, 2001.
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tographic Hardware and Embedded Systems, volume 1717 of Lecture Notes
in Computer Science, pages 316–327. Springer-Verlag, 1999.

[LS01] Pierre-Yvan Liardet and Nigel P. Smart. Preventing SPA/DPA in ECC
systems using the Jacobi form. In Ç.K. Koç, D. Naccache, and C. Paar,
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[Möl01] Bodo Möller. Securing elliptic curve point multiplication against side-
channel attacks. In G.I. Davida and Y. Frankel, editors, Information Se-
curity, volume 2200 of Lecture Notes in Computer Science, pages 324–334.
Springer-Verlag, 2001.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48(177):243–264, January
1987.

[NIST00] National Institute of Standards and Technology (NIST). Digital signature
standard (DSS). FIPS PUB 186-2, 2000.

[OS00] Katsuyuki Okeya and Kouichi Sakurai. Power analysis breaks elliptic
curve cryptosystems even secure against the timing attack. In B. Roy and
E. Okamoto, editors, Progress in Cryptology – INDOCRYPT2000, vol-
ume 1977 of Lecture Notes in Computer Science, pages 178–190. Springer-
Verlag, 2000.

[SECG00] Certicom Research. Standards for efficient cryptography. Version 1.0, 2000.
Available at url http://www.secg.org/.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Grad-
uate Texts in Mathematics. Springer-Verlag, 1986.
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A Mathematical Background

A.1 Elliptic curves

Consider the elliptic curve defined over a field K given by the Weierstraß equa-
tion:

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 . (11)

It is well-known that formally adding the point O makes the set of points
(x, y) ∈ K×K satisfying Eq. (11) into an Abelian group [Sil86, Chapter III]. We
denote this group E(K). We have:

(i) O is the identity element: ∀P ∈ E(K), P + O = P.
(ii) The inverse of P = (x1, y1) is −P = (x1,−y1 − a1x1 − a3).
(iii) If Q = −P then P + Q = O.
(iv) Let P = (x1, y1) and Q = (x2, y2) ∈ E(K) with Q 6= −P. Then P + Q =

(x3, y3) where

x3 = λ2 + a1λ − a2 − x1 − x2 and y3 = −(λ + a1)x3 − µ − a3 (12)

with

λ =











y1 − y2

x1 − x2
if P 6= Q

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P = Q

(13)

and µ = y1 − λx1.

A.2 Projective representations

The formula for λ involves an inversion and this may be a rather costly operation.
For this reason, one usually prefer projective coordinates.

Within projective Jacobian coordinates, we put x = X/Z2 and y = Y/Z3 and
the Weierstraß equation of the elliptic curve becomes

E/K : Y 2 + a1XY Z + a3Y Z3 = X3 + a2X
2Z2 + a4XZ4 + a6Z

6 (14)

where the point at infinity is represented as O = (θ2, θ3, 0) for some θ ∈ K \ {0}.
The affine point (x1, y1) is represented by a projective point (θ2x1, θ

3y1, θ) for
some θ ∈ K\{0} and conversely a projective point (X1, Y1, Z1) 6= O corresponds
to the affine point (X1/Z

2
1 , Y1/Z

3
1 ).

Within projective homogeneous coordinates, we put x = X/Z and y = Y/Z
and the Weierstraß equation of the elliptic curve is

E/K : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 . (15)

The point at infinity is represented as (0, θ, 0) for some θ ∈ K \ {0}. The affine
point (x1, y1) is represented by a projective point (θx1, θy1, θ) for some θ ∈
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K \ {0} and a projective point (X1, Y1, Z1) 6= O corresponds to the affine point
(X1/Z1, Y1/Z1).

Note that in projective coordinates (Jacobian or homogeneous), only the
point at infinity has its Z-coordinate equal to 0. The addition formulæ in pro-
jective coordinates are derived from the affine formulæ by replacing each affine
point (xi, yi) by a projective equivalent (Xi, Yi, Zi).

A.3 Simplified equations

Two main families of elliptic curves are used in cryptography, according to the
base field K over which the curve is defined. In this appendix, we give the cor-
responding simplified formulæ for each family.

Char K 6= 2, 3

In this case, the general Weierstraß equation (Eq. (11)) may be simplified to

E/K : y2 = x3 + ax + b .

Taking a1 = a2 = a3 = 0, a4 = a and a6 = b in Eqs. (12) and (13), the sum
of P = (x1, y2) and Q = (x2, y2) (with P 6= −Q) is given by P + Q = (x3, y3)
where

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1 (16)

with λ = y1−y2

x1−x2
if P 6= Q, and λ = 3x1

2+a
2y1

if P = Q.

Char K = 2 (non-supersingular curves)

Supersingular elliptic curves are cryptographically weaker, we therefore consider
only non-supersingular elliptic curves. The simplified Weierstraß equation then
becomes

E/K : y2 + xy = x3 + ax2 + b .

Again, from Eqs. (12) and (13), the sum of P = (x1, y2) and Q = (x2, y2)
(with P 6= −Q) is given by P + Q = (x3, y3) where

x3 = λ2 + λ + a + x1 + x2 and y3 = λ(x1 + x3) + x3 + y1 (17)

with λ = y1−y2

x1−x2

if P 6= Q, and λ = x1 + y1

x1

if P = Q.


