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Abstract. Elliptic curve cryptosystems are usually implemented over
fields of characteristic two or over (large) prime fields. For large prime
fields, projective coordinates are more suitable as they reduce the com-
putational workload in a point multiplication. In this case, choosing for
parameter a the value −3 further reduces the workload. Over Fp, not all
elliptic curves can be rescaled through isomorphisms to the case a = −3.
This paper suggests the use of the more general notion of isogenies to
rescale the curve. As a side result, this also illustrates that selecting el-
liptic curves with a = −3 (as those recommended in most standards) is
not restrictive.
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1 Introduction

Elliptic curves are plane curves defined by a polynomial equation having strong
algebraic properties. In particular, it is possible to define an addition on points
which yields a group structure. Furthermore, no sub-exponential algorithm is
known to solve the Discrete Logarithm in the induced group.

From a practical viewpoint, fast addition formulæ are to be defined for ef-
ficient protocols using elliptic curve cryptography. As will be described in the
next section, the case where elliptic curve parameter a is equal to −3 allows
faster computation. Unfortunately, one cannot always obtain this value using
the classical notion of isomorphism (though, according to the definition field,
the probability is 1/2 or 1/4).

The aim of this paper is to show that it is possible to obtain the desired
value a = −3 for an isogenous elliptic curve and to perform computations on
this curve rather than on the original one. Being isogenous, both curves have the
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same number of rational points and mappings between curves (called isogenies)
allow to relate point multiplication in both groups.

The rest of this paper is organized as follows. The next section reviews the
addition formulæ on elliptic curves. Section 3 explains how, in some cases, iso-
morphisms of curves may speed up the scalar multiplication. This idea is general-
ized and extended in Section 4 through the use of isogenies. A direct application
to elliptic curve cryptography is given in Section 5. Finally, Section 6 concludes
the paper. (A concrete example of our technique is given in Appendix A.)

2 Elliptic Curve Arithmetic

Let K be a field with CharK 6= 2, 3. An elliptic curve E over K is the set of
points (x, y) ∈ K×K satisfying the Weierstraß equation

E/K : y2 = x3 + ax + b (1)

along with the point at infinity O. If this set is equipped with the so-called
“chord-and-tangent” rule, it becomes an abelian group.

We use the additive notation. The point at infinity is the neutral element,
P + O = O + P = P . For two points P = (x0, y0) and Q = (x1, y1) with
P 6= −Q, their sum R = P + Q = (x2, y2) is given by

x2 = λ2 − x0 − x1 and y2 = (x1 − x2)λ− y1

where λ = (y0−y1)/(x0−x1) when P 6= Q and λ = (3x1
2 +a)/(2y1) otherwise.

The above formulæ require an inversion (in K), a usually costly operation, es-
pecially when K is a large prime field. For this reason, projective coordinates may
be preferred. Within (Jacobian) projective coordinates [IEEE], the representa-
tion of a point is not unique, the triplets (υ2X : υ3Y : υZ) for any υ ∈ K \ {0}
all represent the same point. The correspondence of P = (X0 : Y0 : Z0)
with its affine coordinates is given by P = (x0, y0) where x0 = X0/Z0

2 and
y0 = Y0/Z0

3 if Z0 6= 0, and P = O if Z0 = 0. The addition formulæ of points
P = (X0 : Y0 : Z0) and Q = (X1 : Y1 : Z1) (with P 6= −Q and Z0, Z1 6= 0) then
become R = (X2 : Y2 : Z2) where





X2 = R2 − TW 2

2Y2 = V R−MW 3 when P 6= Q

Z2 = Z0Z1W

(2)

with U0 = X0Z1
2, U1 = X1Z0

2, S0 = Y0Z1
3, S1 = Y1Z0

3, W = U0 − U1,
R = S0 − S1, T = U0 + U1, M = S0 + S1, and V = TW 2 − 2X2, and





X2 = M2 − 2S

Y2 = M(S −X2)− T when P = Q

Z2 = 2Y1Z1

(3)
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with M = 3X1
2 + aZ1

4, S = 4X1Y1
2, and T = 8Y1

4.
We see that the addition of two (different) points requires 16 multiplications

and only 11 when Z1 = 1. The doubling of a point requires 10 multiplications,
including the multiplication by the parameter a. When a is small, this latter
multiplication can be neglected. The value a = −3 is particularly attractive since
then M = 3(X1 − Z1

2)(X1 + Z1
2) and so only 8 multiplications are required to

double a point.
Another useful value for a is a = 0 since then the number of required multi-

plications decreases to 7. This case is not studied here because choosing a = 0
has too many implications on the endomorphism ring of the curve, which could
decrease security (though no algorithm using this property is known today).

3 Isomorphisms

Two elliptic curves E and E′, respectively given by the Weierstraß equations
E/K : y2 = x3 +ax+b and E′

/K : y2 = x3 +a′x+b′, are isomorphic over K if and
only if there exists a nonzero element u ∈ K such that u4a′ = a and u6b′ = b.
Moreover, the isomorphism is given by

φ : E
∼−→ E′,

{
(x, y) 7−→ (u−2x, u−3y)

O 7−→ O .

The elliptic curve E/K : y2 = x3 + ax + b can thus be made isomorphic
to the elliptic curve E′

/K : y2 = x3 − 3x + b′ if and only if a = −3u4 for
some u ∈ K \ {0}. When K = Fp, a (large) prime field, this occurs roughly
with probability 1/2 when p ≡ 3 (mod 4) and with probability 1/4 when p ≡
1 (mod 4). Consequently, there is a non-negligible probability that a random
elliptic curve cannot be rescaled to the interesting1 case a = −3. The next
section investigates an alternative solution to overcome this limitation through
the use of isogenies.

4 Isogenies

An isogeny between two elliptic curves E and E′ defined over K is a non-
constant2 morphism φ : E → E′. The degree of isogeny φ is defined to be

deg φ = [K(E) : φ∗K(E′)]

where φ∗ : K(E′) → K(E), f 7→ φ∗(f) = f ◦ φ denotes the map induced by φ.
(Remark that an isogeny of degree 1 is an isomorphism.)

A useful result is that for every isogeny φ : E → E′, there exists a unique
isogeny φ̂ : E′ → E, called the dual isogeny [Sil86, III.4], such that

φ̂ ◦ φ = [m] and φ ◦ φ̂ = [m]′

1 i.e., suitable for fast implementations; see Section 2.
2 We do not consider the zero isogeny φ = [0].
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where m = deg φ and [m] (resp. [m]′) is the multiplication-by-m isogeny on E
(resp. E′). Interestingly, this leads to a different way for computing Q = [rm]P
as Q = φ̂

(
[r]′φ(P )

)
.

P ∈ E(K)
[rm]−−−−−→ Q = [rm]P ∈ E(K)

φ
??y x??φ̂

P ′ ∈ E′(K)
[r]′−−−−−→ Q′ = [r]′P ′ ∈ E′(K)

Fig. 1. Computing Q = [rm]P through isogenies.

Isogenies have been intensively studied in order to improve point counting
algorithms. What we are interested in is to build an isogeny of small degree. We
know that we can find an isogeny φ of degree m from E to a curve E′ if and
only if the equation

Φm(j,X) = 0

where Φm is the m-th modular polynomial and j is the j-invariant of the curve,
has a rational solution. If so, we can follow the method described in [BSS99,
pp. 126–130] to find the isogenous curve equation. We check that the new curve
is isomorphic to a curve with parameter a = −3. It then remains to compute the
isogeny itself. An algorithm for producing the isogeny is presented in [CM94].

5 Application to Cryptography

The basic operation of elliptic curve cryptosystems is the point multiplication:
given a point P = (x1, y1) ∈ E(K), one has to compute Q = [k]P = (xk, yk) for
some 1 ≤ k < ordE P . Assume that the definition field is Fp where p is a large
prime. We have seen in Section 2 that in this case an elliptic curve with parameter
a = −3 yields a point multiplication substantially faster when working within
projective coordinates. We compute Q = [k]P as (Xk : Yk : Zk) = [k](x1 : y1 : 1)
and then (xk, yk) = (Xk/Zk

2, Yk/Zk
3) with only 8 multiplications (in Fp) per

doubling. When E has not parameter a = −3 (or cannot be reduced to this case
through isomorphism) then we can apply the following methodology.

Let φ denote an isogeny of degree m between the elliptic curves E/Fp
: y2 =

x3 +ax+ b and E′
/Fp

: y2 = x3− 3x+ b′. Since, for security reasons, point P has
large prime order, we may assume w.l.o.g. that gcd(m, ordE P ) = 1 and so m is
invertible modulo ordE P . We define km ≡ k/m (mod ordE P ). Hence, we can
obtain Q = [k]P according to

Q = φ̂
(
[km]′φ(P )

)
. (4)

Example 1. We give a “toy” example to illustrate the technique. A concrete
example (i.e., with cryptographic size) can be found in appendix.
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Over the field F149, we define the elliptic curves

E/F149 : y2 = x3 + x + 133

and
E′

/F149 : y2 = x3 − 3x− 14

which are isogenous via the maps

ϕ : E −→ E′

(x, y) 7−→ (x5+4x4+99x3+42x2+99x+49
(17x2+34x+50)2 , x6+6x5+107x4+126x3+112x2+116x+139

(17x2+34x+50)3 )

ϕ̂ : E′ −→ E

(x, y) 7−→ (x5+85x4+60x3+137x2+26x+95
(123x2+87x+86)2 , x6+53x5+134x4+74x3+106x2+50x+34

(123x2+87x+86)3 )

.

Choosing a random point P = (107, 6) on the curve E, we have

ϕ(P ) = (56, 106) ∈ E′

ϕ̂(ϕ(P )) = (70, 143) ∈ E

whereby it is easily checked that

ϕ̂(ϕ(P )) = [5]P .

6 Concluding Remarks

The first consequence of our work on isogenies is that computing a point mul-
tiplication can in most of cases be made using a curve with a = −3 even when
such a value cannot be rescaled directly through isomorphism. This leads to a
faster point multiplication.

The second consequence is that when choosing a random curve, one can re-
strict oneself to curves with parameter a = −3 and a random value for parameter
b. This follows from the observation that most curves are mapped to a curve with
a = −3 by an isogeny of small degree. The Discrete Logarithm Problem on the
isogenous curve is then as hard as on the original curve.

This paper can be seen as a justification to the fact that most curves recom-
mended in cryptographic standards use for parameter a the value −3.
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A A Concrete Example

The following example is taken from [BSS99]. The curve equation is

E/Fp
: y2 = x3 + ax + b

with





p = 2160 + 7
a = 1
b = 1010685925500572430206879608558642904226772615919
#E(Fp) = 1461501637330902918203683038630093524408650319587

.

[It should be noted that this curve is not isomorphic to a curve with parameter
a = −3.]

This curve is isogenous to

E′
/Fp

: y2 = x3 − 3x + b′

with b′ = 632739926637917759594186681013274896520567575517. The isogeny,
whose degree is m = 11, is given by

φ(x, y) =
(

u(x)
w(x)2

, y · v(x)
w(x)3

)

where

u(x) = 370690178134646041774135216324801714060106373562 +
861256312888039375439296090988112886597456503254 x−
710816068955948441247024728782103926686793729401 x2−
660949999632736745607557761155749317154796231190 x3+

1048998054758254603993175686665333147309646767733 x4−
682987121612996351004314311578456905260387427374 x5−
540119027692075395022771129540214285068704207535 x6+
796617542631289284086426144833751968835133978328 x7+
563704518387054717437229862610850421868057177503 x8−
424589103609629859400080142081400291591066256566 x9+
876425480231036355075555366979717142934963067430 x10 + x11



Fast Point Multiplication on Elliptic Curves Through Isogenies 7

v(x) = 452495052944959116984585216749653914270910889527 +
1069380560421056039204154321570750092455655960036 x+
496336695272872100615902885903969413071557033191 x2+
718791797298241485154466160261837650473132805918 x3+
893470216761969919299662643524612226699543687594 x4+
953601099825907871801118853480137323597026757205 x5+
188866336226222982567900366032776956337406324450 x6+
432737744011935420109908579679673903747444140165 x7+
710429088634204361804098541932768571665990299148 x8+

1254137444856367988180706065292841136879909974200 x9+
1361931671523847383204978766055209920655438834106 x10+
224174838124749514144448341849636056852679202105 x11+
822580180065442824400025136323882213536827521732 x12+
868139349472303188526373742085334684040049294310 x13+

1314638220346554532613333050469575714402444601145 x14 + x15

w(x) = 325019872979902111502240187587861871049872879448 +
1363937087645154617962790363056113799911372395317 x+
1411921018270261327797245618214350584279494238051 x2+

70237665636693548622727735807424896198713030751 x3+
540411113970774686458900731481876707150738267390 x4+
185696743461557439053221819709786835990283193274 x5

and the dual isogeny is given by

φ̂(x, y) =
(

û(x)
ŵ(x)2

, y · v̂(x)
ŵ(x)3

)

where

û(x) = 753112556937953823969300906862974140977871919143 +
658097951770824134489820348651797866485633437294 x−
351835013846476674428460923896677491968924046257 x2+
255452469036726348942988411073320210214908570746 x3−
183344206500148712293227397443262275604473805183 x4+

1257522085046477143640257611012600954458584251634 x5−
690249731938757846152743509698167948458988299724 x6−
25965441700829881061329929468284859568810501028 x7−

185676039559524163159877611664711807065728381236 x8−
716262556719628420603881165473253327214783084158 x9+

1060348144174231532622460328206245426971293168900 x10 + x11
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v̂(x) = 1067065027333404917371021032763668506972469630529 +
883361479796915302620798489870662566323272209634 x+
147354313328013540556173763008726027760186777184 x2+
36807803650978825404154106770624195670055714497 x3+

1165987233874930893186423892075380266512707088792 x4+
131003653773737684795042406457959921226354724875 x5+

1261920559979225427898222520995078688704637834874 x6+
175729049990350918186528651258255601594653396176 x7+
89740572830784319080614842500402464974501364756 x8+

1399715860686557861571172231451517092102243078837 x9+
1246192589478925975703839359801414492925549285355 x10+
616026709992494880062447467409326210274152875856 x11+
428814934564835486109414410124450806255556418100 x12+
241297166226105688229767450725325391446035097070 x13+
129020578930444380730005659593085120801007210367 x14 + x15

ŵ(x) = 135333262963423915607144923995277271284729908723 +
859735346861327581657057165862979486336596776258 x+

1293953775189763869954229560164157649159824538936 x2+
879548830755737554207227595590336309492241550000 x3+
840187486235452361428842085134225193974003541259 x4+
784570292438131115605192250788110938462322411742 x5


