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Abstract. The GINX method in TFHE enables low-latency ciphertext
bootstrapping with relatively small bootstrapping keys but is limited to
binary or ternary key distributions. In contrast, the AP method supports
arbitrary key distributions, albeit at the cost of significantly larger boot-
strapping keys. Building on AP, automorphism-based methods, intro-
duced in LMK+ (EUROCRYPT 2023), achieve smaller key sizes. How-
ever, each automorphism application necessitates a key switch, introduc-
ing additional computational overhead and noise accumulation.
This paper advances automorphism-based methods in two important
ways. First, it proposes a novel traversal blind rotation algorithm that op-
timizes the number of key switches for a given key material. Second, it in-
troduces a new external product that is automorphism-parametrized and
seamlessly applies an automorphism to one of the input ciphertexts. To-
gether, these techniques substantially reduce the number of key switches,
resulting in faster bootstrapping and improved noise control. As an inde-
pendent contribution, we introduce a comprehensive theoretical frame-
work for analyzing the expected number of automorphism key switches.
The predictions of this framework perfectly align with the results of ex-
tensive numerical experiments, demonstrating its practical relevance.
In typical settings, by leveraging additional key material, the LLW+

approach (TCHES 2024) reduces the number of key switches by 17%
compared to LMK+. Our combined techniques achieve a 46% reduction
using similar key material and can eliminate an arbitrary large number
(e.g., more than 99%) of key switches with only a moderate (9×) in-
crease in key material size. As a result, the total bootstrapping runtime
is decreased by more than 34%.

Keywords: Fully homomorphic encryption (FHE) · Ciphertext boot-
strapping · Blind rotation · Automorphisms · Implementation

1 Introduction

Fully homomorphic encryption (FHE) schemes [RAD78, Gen10] enable the eval-
uation of any circuit over encrypted data, ensuring that the data remains end-to-
end encrypted without requiring decryption for processing. Since their inception
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in 2009, substantial research has focused on enhancing the practical efficiency of
FHE, which remains a critical challenge for its widespread deployment.

Current FHE implementations require noisy ciphertexts for their security.
However, as homomorphic operations are performed, noise accumulates, and
beyond a certain threshold, ciphertexts become undecryptable. This issue is re-
solved via bootstrapping, a technique that refreshes ciphertexts by reducing the
noise to an acceptable level through a homomorphic evaluation of the decryp-
tion algorithm [Gen10]. On input a (highly) noisy ciphertext, the output is a
ciphertext encrypting the same message, but with a reduced level of noise. The
most efficient instantiations of ciphertext bootstrapping makes use of an astute
technique known as blind rotation [AP14, DM15, GINX16, CGGI20].

Using a polynomial representation, the blind rotation consists in the homo-
morphic evaluation of v(x) · x

∑n
i=1 ai si for some polynomial v, where the vector

a = (a1, . . . , an) is public and the vector s = (s1, . . . , sn) is secret. The blind
rotation can also be used as a convenient way to implement a homomorphic look-
up table with polynomials; see e.g., [Joy22]. When coupled with a bootstrapping
operation, the homomorphic evaluation of a look-up table is also know as pro-
grammable bootstrapping [CJP21]. Since any univariate function (over a small
domain) can always be expressed as a look-up table, an encryption scheme al-
lowing homomorphic addition and homomorphic table look-up turns out to be
fully homomorphic. Regular bootstrapping, whose primary goal is to reduce the
noise, corresponds to a programmable bootstrapping for the identity map.

Several approaches are known for the blind rotation, with different trade-offs
between vector coefficients, evaluation key material, and number of operations:

1. The GINX algorithm [GINX16, CGGI20] features comparatively small eval-
uation key material associated to secret vector s, but requires s to be binary.

2. The AP algorithm [AP14, DM15] requires a huge amount of evaluation key
material associated to secret vector s (exponential in the coefficient space of
public vectors a), although imposing no restrictions on the distribution of s.

3. Automorphism-based algorithms [BDF18, LMK+23, WWL+24], ultimately
based on AP, decrease the global amount of evaluation key material thanks to
homomorphic evaluations of automorphisms. However, each such automor-
phism evaluation requires a key switch, which in fine leads to a substantial
increase in the overall computational cost and the noise growth. Even in the
most favorable case, one automorphism key switch operation costs at least
as much as 0.6 external products and has almost the same noise growth.

Previous attempts to enhance GINX-type algorithms for using other distribu-
tions of the secret vector coefficients conclude to limit keys to small distribu-
tions (typically, binary or ternary) in order to avoid a blow-up of evaluation key
material, thereby reducing their applicability; see e.g., [JP22]. Certain adapta-
tions and extensions of the AP algorithm to various encryption schemes, such
as NTRU, can be found in [XZD+23, MKMS24, LLW+24]. In order to opti-
mize the blind rotation, automorphism-based variants of AP focus on reducing
the computational overhead introduced by the key switches incurred from the
homomorphic evaluation of automorphisms [LLW+24, Lee24, ZWC25].
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External products and automorphisms The external product of ciphertexts is
a fundamental operation in fully homomorphic encryption, enabling the blind
rotation for (programmable) bootstrapping, and also playing a critical role in
advanced techniques such as batched bootstrapping [MKMS24] and circuit boot-
strapping [WWL+24]. Specifically, given a ciphertext c ← Encsk(µ) encrypt-
ing a plaintext µ under the algorithm Enc, and another (extended) ciphertext
c̄← Enc⊛sk(µ̄) encrypting a plaintext µ̄ under an associated algorithm Enc⊛, the
external product operation, denoted ⊛, produces a new ciphertext c′ = c ⊛ c̄,
which encrypts the product of the plaintexts, µ′ = µ · µ̄.

A crucial observation is that in all of the automorphism-based methods,
the homomorphic evaluation of automorphisms, including the associated key
switch, is most of the time combined with an external product. Specifically, these
methods require the encryption of ψ(µ)·µ̄ from the encryptions of µ and of µ̄, for
some automorphism ψ. This process is typically carried out in three sequential
steps, beginning with the ciphertexts c← Encsk(µ) and c̄← Enc⊛sk(µ̄). First, the
automorphism ψ is applied to c, resulting in c1 ← ψ(c) ∈ Encψ(sk)(ψ(µ)). Next, a
key switch (KS) operation is performed to transform c1 into c2 ← KSψ(sk)→sk(c1),
which belongs to Encsk(ψ(µ)). Finally, the transformed ciphertext c2 is combined
with c̄ through an external product operation, yielding c3 ← c2 ⊛ c̄, which
encrypts the product ψ(µ) · µ̄, i.e., c3 ← Encsk(ψ(µ) · µ̄).

Our techniques and results The main contribution of this paper is the intro-
duction of a novel operation for FHE, the Automorphism-Parametrized External
Product. This operation integrates three key steps—automorphism evaluation,
its associated key switch, and an external product—at the computational cost
of a single external product. Specifically, we define this new operator as follows:

Encsk(µ)⊛ψ Enc⊛,ψsk (µ̄)← Encsk(ψ(µ) · µ̄) ,

where Encsk(µ) ⊛ψ Enc⊛,ψsk (µ̄) is computed as ψ(Encsk(µ)) ⊛ Enc⊛,ψsk (µ̄). Here,

Enc⊛,ψsk (µ̄) is a newly introduced ciphertext format, which we call automorphism-
extended ciphertext. As will become evident in Section 4, this format naturally
arises from the associated encryption algorithm Enc⊛; in fact, both formats
coincide when the secret key is ψ(sk) instead of sk. Notably, our new operator
eliminates the key switch overhead, which brings a significant practical advantage
by substantially reducing the associated computational cost and noise growth.

It is also important to note that although the format of the second ciphertext,
Enc⊛,ψsk (µ̄), has been modified, our new external product still outputs a regular
Encsk ciphertext as before. This ensures seamless integration in most applications
that rely on the product in the exponent based on automorphisms, including
blind rotation. Indeed, in such cases the second ciphertext is typically a global
input (e.g., a bootstrapping key in the context of blind rotation).

Another contribution of this paper is an improved algorithm for blind rotation
in FHE, termed the Traversal Windowed-Horner Method and detailed in Algo-
rithm 3.2. Building on Algorithm 7 of [LMK+23], which has been reformulated in
Algorithm 3.1 for clarity and easier adaptation, our new approach addresses gaps
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between two non-empty sets of mask values by incorporating sign changes di-
rectly into automorphism evaluations. This integration reduces the average gap
size between automorphism applications, enhancing efficiency, particularly for
smaller window sizes. Compared to the original method, our traversal algorithm
achieves consistent reductions in the number of automorphism key switches, with
typical gains of up to 8% depending on the parameters, whereas both methods
converge to comparable efficiency for larger windows.

Our second main contribution is a new very effective automorphism-based
blind rotation, the so-called S-Parametrized Method formalized in Algorithm 4.1,
which leverages the power of our automorphism-parametrized external product
inside the workflow of our traversal method. Depending on a set S of admissible
“shortcut” automorphisms to use with the new parametrized external product,
it provides flexible trade-offs between key size, which is linearly linked to ♯S,
and performance and noise growth, which both improve when ♯S grows since
this lowers the number of required key switches.

To illustrate the benefits of this technique, we experimentally evaluate its im-
pact on several parameter sets: (i) a parameter set from [LMK+23, LLW+24], de-
signed for Gaussian keys and boolean messages, allowing direct comparisons with
previous works; (ii) a parameter set specified in the TFHE-rs library [Zam22], pri-
marily tailored for binary keys and 4-bit payloads, reflecting practical application
scenarios. Extensive results are given in Table 5.4. With only a moderate increase
in bootstrapping key sizes similar to [LLW+24, Lee24], we reduce the number
of key switches compared to [LMK+23] by approximately 49.1% (resp. 46.4%),
significantly surpassing (an adaptation of) [LLW+24], which would achieve only
an 18.5% (resp. 17.0%) reduction. By allowing a slightly larger increase in boot-
strapping key sizes, we achieve a 59.4% (resp. 55.5%) reduction in key switches
relatively to [LLW+24] and 66.9% (resp. 63.1%) compared to [LMK+23]. More-
over, the number of key switches drops to as few as 2 or 3 on average for keys
that are only 9 times larger than in [LMK+23], resulting in a total runtime
improvement by more than 34%. This outperforms AP bootstrapping by far,
which for comparable performance requires keys that are more than 2 orders of
magnitude larger. Note the additional keys can easily be prefetched according
to the mask components, minimizing the impact on memory bandwidth.

Finally, as a last contribution, we provide a thorough analysis of the com-
plexity and noise growth of automorphism-based blind rotation algorithms. We
develop a theoretical framework that reduces this problem to studying the dis-
tribution of gaps in random divisions of an interval. Our new automorphism-
parametrized method thus provably demonstrates fewer key switches and im-
proved efficiency compared to existing approaches, and numerical experiments
validate these improvements. In summary, our new techniques not only offer sub-
stantial reductions in key-switching overhead but also provide flexible trade-offs
to meet varying performance and resource requirements. Although primarily pre-
sented for the TFHE cryptosystem, our methods and techniques are adaptable
to other FHE schemes, such as FHEW [DM15] and FINAL [BIP+22], offering
versatile and practical improvements for bootstrapping ciphertexts in FHE.
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Outline of the paper Section 2 reviews the relevant background. Section 3 refor-
mulates and improves the [LMK+23] automorphism-based blind rotation. Our
automorphism-parametrized external product is introduced in Section 4 and we
thereafter formally describe our most efficient S-parametrized blind rotation. Fi-
nally, Section 5 contains our theoretical framework and numerical experiments.

2 Definitions and Notations

Let q, t < q, and k be positive integers, and let ∆ =
⌊
q
t

⌋
. The m-th cyclotomic

polynomial Φm defines the cyclotomic field of conductor m, for m ̸≡ 2 mod 4, as
K = Q[x]

/〈
Φm(x)

〉
. The degree of Φm is N = φ(m), where φ is Euler’s totient

function. Common values for m include m a power of two, a prime p > 2, or of
the form pk, 4pk, 2a3b [JW22]. Let alsoR = Z[x]

/〈
Φm(x)

〉
be the ring of integers

of K, and Rq = R
/
qR. The Galois group of K

/
Q is isomorphic to

(
Z
/
mZ
)×

and consists of automorphisms τu defined by τu(x) = xu, for u ∈
(
Z
/
mZ
)×

; the
identity automorphism τ1 is also denoted as id.

GLWE ciphertexts GLWE stands for generalized-LWE and LWE refers to Learning
with Errors [Reg09]. GLWE-type encryption appears for example in [SSTX09,
LPR10, LS15]. Cleartext messages in a GLWE encryption scheme are polynomials
in R with coefficients modulo t. Prior to encryption, a cleartext message m is
first encoded as a plaintext µ = ∆ ·m ∈ Rq. The GLWE encryption of µ ∈ Rq
under private key s=

(
s1, . . . ,sk

)
∈ Rk is then given by

GLWEs(µ)←
(
a1, . . . ,ak, b =

∑k
j=1 aj · sj + µ + e

)
∈ Rk+1

q ,

where a1, . . . ,ak are random polynomials sampled in Rq and e ∈ R is a random
noise polynomial with small coefficients. Vector

(
a1, . . . ,ak

)
is called the mask,

b is the body, and the corresponding error e is denoted by Err
(
GLWEs(µ)

)
.

Gadget-GLWE ciphertexts and extended-GLWE ciphertexts Following the pre-
sentation of [MP21], the simplest way to view extended-GLWE ciphertexts1 is
through gadget decomposition of GLWE ciphertexts.

Applied to f∈ Rq, the gadget decomposition of fwith respect to the gadget
vector g =

(
g1, . . . ,gℓ

)
∈ Rℓq is given by a vector ∇f ∈ Rℓ s.t.

〈
∇f,g

〉
≈ f.

The quality of the gadget decomposition is defined by β∇ :=
∥∥∇f∥∥∞, and its

precision is given by ε∇ :=
∥∥f− 〈∇f,g〉∥∥∞; see e.g., [CGGI20, BJ24]. The

corresponding gadget-GLWE ciphertext (indicated with a ∇ superscript) of a
plaintext µ̄ ∈ Rq under private key s=

(
s1, . . . ,sk

)
∈ Rk is defined as

GLWE∇
s (µ̄)←

(
GLWEs(g1 · µ̄), . . . ,GLWEs(gℓ · µ̄)

)
.

This leveled encryption is used to build an extended-GLWE ciphertext

GLWE⊛
s (µ̄)←

(
GLWE∇

s (−s1 · µ̄), . . . ,GLWE∇
s (−sk · µ̄),GLWE∇

s (µ̄)
)
,

whose definition coincides with the definition of a GGSW ciphertext.

1 Also known as GGSW ciphertexts, which generalize the GSW encryption [GSW13].
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External product A GLWE ciphertext GLWEs(µ) can be combined with an ex-
tended GLWE ciphertext GLWE⊛

s (µ̄) to yield another GLWE ciphertext through
the external product, which is denoted by ⊛ and explicitly defined by

GLWEs(µ)⊛GLWE⊛
s (µ̄) :=〈

∇b,GLWE∇
s (µ̄)

〉
+
∑k
j=1

〈
∇aj ,GLWE∇

s (−sj · µ̄)
〉
. (2.1)

In certain cases (e.g., [BCG+24, Theorem 3]), different gadget decomposition
levels are used for the mask and the body of the ciphertext, denoted respectively
by ℓ1 and ℓ2. This is indicated by writing the individual decompositions as ∇ℓ1
and ∇ℓ2 , with the overall decomposition given by ∇ = ∇ℓ1,ℓ2 .

It can be verified that GLWEs(µ) ⊛ GLWE⊛
s (µ̄) ← GLWEs(µ · µ̄), provided

that (i) the gadget decomposition is sufficiently exact and (ii) e · µ̄ is sufficiently
small, where e= Err

(
GLWEs(µ)

)
[CGGI20, Theorem 3.13 and Corollary 3.14].

Proposition 2.1. Assume m is a power of two. Let ∇ = ∇ℓ1,ℓ2 be a gadget
decomposition of quality β∇ =

(
β1, β2

)
and precision ε∇ =

(
ε1, ε2

)
, whose output

values are uniform and centered around 0. Let ein and ē represent the error
associated with valid samples GLWEs

(
µ
)
and GLWE⊛

s

(
µ̄
)
, respectively. Then,

GLWEs

(
µ
)
⊛GLWE⊛

s

(
µ̄
)
is a sample of GLWEs

(
µ·µ̄
)
with an error Eof variance

σ2
⊛ ≤

∥∥µ̄∥∥2
2
· σ2

in +N
(
ℓ2
β2
2

12 + kℓ1
β2
1

12

)
· σ2

∇ +
∥∥µ̄∥∥2

2

(
ε22
12 + kN

ε21
12 · E[s

2
j,i]
)
.

Proof. This is a special case of the generalized result presented in Proposition 4.3,
obtained by taking ψ = id and C∞ = 1. In particular, the exact expression of
the error term E= B−

〈
A,s

〉
− µ · µ̄ is given by

E= µ̄ · ein +
(〈
∇ℓ2b, ē0

〉
+
∑

1≤j≤k

〈
∇ℓ1aj , ēj

〉)
+ µ̄ ·

(
e∇ℓ2

(
b
)
−
∑

1≤j≤k

sj · e∇ℓ1
(
aj
))

,

where e∇ℓu (w) :=
〈
∇ℓuw,gu

〉
− w for u ∈ {1, 2} and any w ∈ Rq. ⊓⊔

Homomorphic evaluation of automorphisms Given an automorphism τu : x 7→ xu

for some unit u ∈
(
Z
/
mZ
)×

and GLWEs(µ)←
(
a1, . . . ,ak, b

)
∈ Rk+1

q , a GLWE

ciphertext of µ := µ(x) ∈ Rq under private key s=
(
s1, . . . ,sk

)
, observe that

τu
(
GLWEs(µ)

)
←
(
τu(a1), . . . , τu(ak), τu(b)

)
∈ GLWEτu(s)(τu(µ))

is a GLWE encryption of τu(µ) = µ(xu) under key τu(s) = (τu(s1), . . . , τu(sk)),
provided that τu(e), where e = Err

(
GLWEs(µ)

)
, stays sufficiently small. Now,

let aku := kskτu(s)→s be an automorphism key, i.e., a key-switching key that
allows converting a ciphertext under key τu(s) back to a ciphertext under key s.
Specifically, aku is defined as aku ←

(
GLWE∇

s (−τu(s1)), . . . ,GLWE∇
s (−τu(sk))

)
.
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Then, a subsequent key switch KSaku on τu
(
GLWEs(µ)

)
with aku yields the ci-

phertext GLWEs(τu(µ)). Thus, the composition of these two operations homo-
morphically evaluates τu and will be denoted by HomAutu(·, aku); explicitly,

HomAutu
(
GLWEs(µ), aku

)
← KSaku ◦ τu(GLWEs(µ)) :=(

0, . . . , 0, τu(b)
)
+
∑k
j=1

〈
∇τu(aj),GLWE∇

s

(
−τu(sj)

)〉
. (2.2)

Correctness supposes that the resulting noise keeps below a certain threshold.

Proposition 2.2. Assume m is a power of two. Let ∇ℓks be a gadget decom-
position of quality βks and precision εks, whose output values are uniform and
centered around 0. Let ein and ēks,j, where j ∈ J1, kK, represent the error asso-

ciated with respectively valid samples GLWEs

(
µ
)
and GLWE∇

s

(
−τu(sj)

)
. Then,

HomAutu
(
GLWEs(µ), aku

)
is a sample of GLWEs

(
τu(µ)

)
with error of variance

σ2
aut ≤ σ2

in +N
(
kℓks

β2
ks

12

)
· σ2

ks + kN
(
E[s2] · ε

2
ks

12

)
.

Proof. The exact expression of the error term E= B−
〈
A,s

〉
−τu

(
µ
)
is given by

E= τu(ein) +
∑

1≤j≤k

〈
∇ℓksτu(aj), ēks,j

〉
−
∑

1≤j≤k

τu(sj) · e∇ℓks
(
τu(aj)

)
,

where e∇ℓks (w) :=
〈
∇ℓksw,gks

〉
− w for any w ∈ Rq. ⊓⊔

We emphasize that an automorphism key switch has comparable computa-
tional cost and noise growth than an external product. The noise growth ratio
for both operations directly stems from Propositions 2.1 and 2.2 and is relatively
close to 1 for comparable decomposition parameters. As for the computational
costs, counting (inverse) transforms (from) to the Fourier domain, assuming
ℓ = ℓ1 = ℓ2 = ℓks for simplicity’s sake, the ratio between an automorphism key

switch and an external product is given by 1+k(ℓ+1)
(k+1)(ℓ+1) , which lies between k

k+1

and 1. For typical values k = 1 and ℓ ≤ 3, one automorphism key switch thus
computationally weights at least as much as 5

8 external products. This k = 1

case is actually the most favorable, as k increases, k
k+1 approaches 1.

AP blind rotation An important application of the external product is the eval-
uation of an inner product in the exponent, or the related task of performing a
blind rotation. Given an LWE ciphertext c̃ =

(
ã1, . . . , ãn, b̃

)
∈ (Z

/
mZ)n+1 under

a private key s =
(
s1, . . . , sn

)
and a so-called test polynomial v ∈ Rq, the blind

rotation consists in evaluating homomorphically v(x) ·x−b̃+
∑n
i=1 ãisi . Additional

key material known as bootstrapping keys is made available for the computation,
namely the encryption of the key digits s1, . . . , sn. In its generic version, the AP
blind rotation requires a set of n(m− 1) bootstrapping keys,

bskAP :=
{
bskAP[i, u]← GLWE⊛

s (x
usi)

∣∣∣ i ∈ q
1, n

y
and u ∈

q
1,m− 1

y}
.
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The AP method uses an accumulator ACC ∈ Rk+1
q that successively contains a

GLWE encryption of q0 = v ·x−b̃, and then qi ← qi−1 ·xãisi = v ·x−b̃+
∑i
j=1 ãjsj

for i ∈
q
1, n

y
. At the end of the iteration, the accumulator indeed contains a

GLWE encryption of v · x−b̃+
∑n
i=1 ãisi . In an algorithmic form, this writes as:

ACC← (0, . . . , 0, x−b̃ · v) /* Trivial GLWE encryption of q0 with null noise */

for i = 1 to n do
if ãi ̸= 0 then ACC← ACC⊛ bskAP[i, ãi]

return ACC

Automorphism-based methods The use of automorphisms aims at reducing the
size of the additional key material in the blind rotation while containing the com-
putational overhead. Without loss of generality, automorphism-based methods
assume that each mask component ãi of the input LWE ciphertext, i ∈ J1, nK, is
either 0 or belongs to

(
Z
/
mZ
)×

, so that when non-zero, each indeed corresponds
to an automorphism τãi : x 7→ xãi . Different strategies from [BDF18, MKMS24,
LMK+23, WWL+24] are summarized in [BJ25, App.A] to reduce to this setting.

As described above, a loop iteration of the AP blind rotation consists in
computing a GLWE ciphertext c(i) of qi(x) = qi−1(x) · xãisi from a GLWE
ciphertext c(i−1) of qi−1(x). Using automorphisms as in [BDF18, Algorithms 5
and 6],2 this can be achieved in three consecutive steps as

(1) c(i) ← HomAut1/ãi(c
(i−1), ak1/ãi) ∈ GLWEs

(
qi−1(x

1/ãi)
)

(2) c(i) ← c(i) ⊛GLWE⊛
s (x

si) ∈ GLWEs

(
qi−1(x

1/ãi) · xsi
)

(3) c(i) ← HomAutãi(c
(i), akãi) ∈ GLWEs

(
qi−1(x) · xãisi

)
where the inverses are taken modulo m. The resulting blind rotation algorithm
(depicted in Figure 2.1(a)) requires the following key material:

bskAUT :=
{
bskAUT[i]← GLWE⊛

s (x
si)
∣∣∣ i ∈ q

1, n
y}

(2.3)

and

akAUT :=
{
akAUT[u]← kskτu(s)→s

∣∣∣ u ∈ (Z/mZ
)× \ {1}} . (2.4)

The number of homomorphic automorphism evaluations must not be over-
looked as each involves a key switch. As noted e.g., in [XZD+23, Algorithm 1] or
[MKMS24, Algorithm 2, inner loop], the two automorphisms of each loop itera-
tion can be combined together, halving the number of required key switches. This
trick is applied and detailed in Figure 2.1(b) (telescoping method). When u = 1,
HomAutu is the identity map and so is always skipped. Hence, the ãi’s can be
regrouped by values, so that if the set

{
ãi
∣∣ i ∈ q

1, n
y}
\{0, 1} has cardinality α,

at most α < φ(m) automorphism evaluations and key switches are performed.
Compared to the generic, non automorphism-based AP blind rotation pre-

sented earlier, the telescoping method already behaves much nicer. The key

2 Originally in the circulant setting, however conceptually it remains exactly the same.
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ACC← (0, . . . , 0, v · x−b̃)
for i ∈ J1, nK such that ãi ̸= 0 do

u← 1/ãi mod m
ACC← HomAutu(ACC, ak

AUT[u])
ACC← ACC⊛ bskAUT[i]
ACC← HomAutãi(ACC, ak

AUT[ãi])

return ACC

(a) Basic method.

ACC← (0, . . . , 0, v · x−b̃), ãold ← 1
for i ∈ J1, nK such that ãi ̸= 0 do

u← ãold/ãi mod m, ãold ← ãi
ACC← HomAutu(ACC, ak

AUT[u])
ACC← ACC⊛ bskAUT[i]

ACC← HomAutãold(ACC, ak
AUT[ãold])

return ACC

(b) Telescoping method.

Fig. 2.1: Automorphism-based methods.

material drops from n(m− 1) GLWE⊛ ciphertexts (i.e., n(k+1)(m− 1) GLWE∇

ciphertexts) to n GLWE⊛ ciphertexts plus k(φ(m) − 1) GLWE∇ ciphertexts.
Computation-wise, at most min{n, φ(m)} extra key switches are required; the
number of external products nevertheless remains equal to n.

3 Enhanced Blind Rotation Algorithms

In this section, we present a Horner-like method for the blind rotation, which is
a minor variation of [LMK+23, Algorithm 7]. Our reformulation primarily offers
the advantage of providing a simpler basis for analyzing the results of Section 4.
We also propose a new method derived from it—the Traversal Windowed-Horner
method—which consistently outperforms [LMK+23]. These methods aim to re-
duce both the size of the keys and the number of automorphism applications.

3.1 Windowed-Horner Method

The idea of re-arranging the mask components ãi ∈
(
Z
/
mZ
)×

has been ex-
tended in [LMK+23, Section 3], where the ãi’s are not only regrouped by values,

but also ordered according to the group structure of
(
Z
/
mZ
)×

. The immediate
consequence is a reduction of the number of automorphism keys down to the

number of cyclic components of
(
Z
/
mZ
)×

.
As an illustration, following [LMK+23], we focus on the power-of-two con-

ductor case.3 Let m = 2N with N = 2ν , ν ≥ 2, so that
(
Z
/
mZ
)×

=
〈
−1
〉
×
〈
g
〉

using e.g., g = 5. Then, every element ãi ∈
(
Z
/
mZ
)×

can be written as

ãi = (−1)ϵi · gti mod m, ϵi ∈
{
0, 1
}
, 0 ≤ ti < 2ν−1 .

The high-level core idea of [LMK+23, Section 3.1] can be alternatively expressed
as adapting the ordering of the mask components so as to ensure that the quo-
tient ãold/ãi in the telescoping method (Figure 2.1(b)) is always a small power

3 Although only the power-of-two conductor case is treated in [LMK+23], their core
result readily applies to e.g., the simpler case of prime-conductor cyclotomic fields.
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of g. In order to formalize this, it is useful to introduce the sets

I+t :=
{
i ∈

q
1, n

y ∣∣∣ ãi = gt mod 2N
}

(3.1)

and

I−t :=
{
i ∈

q
1, n

y ∣∣∣ ãi = −gt mod 2N
}
. (3.2)

Then the computation of
〈
ã, s

〉
=
∑n
i=1 ãisi can be reordered as

n∑
i=1

(−1)ϵigti · si =
N/2−1∑
t=0

gt ·
(∑

i∈I+t
si

)
−
N/2−1∑
t=0

gt ·
(∑

i∈I−t
si

)
, (3.3)

which is naturally computed in a Horner-like fashion as∑
i∈I+0

si + g

(∑
i∈I+1

si + · · ·+ g

(∑
i∈I+

N/2−1
si

− g
(∑

i∈I−0
si + g

(∑
i∈I−1

si + · · ·+ g(
∑
i∈I−

N/2−1
si)
))))

. (3.4)

This results in Algorithm 3.1, which is an almost (see Remark 3.1) equivalent
rewriting of [LMK+23, Algorithm 7], reorganized so as to follow the work-flow
of Figure 2.1(b). Thus, starting from ãold = −1 = −gN/2 mod 2N , it iterates
on non-empty sets I±t so that for i ∈ I±t , ãold/ãi is always the smallest possible
power of g. Gaps, when some of the I±t are empty, are filled using a jumping
strategy defined by a window size w and automorphism keys

akHORN :=
{
akHORN[0]← kskτ−g(s)→s

}
∪{

akHORN[u]← kskτgu (s)→s

∣∣∣ u ∈ q
1, w

y}
. (3.5)

Using w = 1 corresponds to repeated applications of τg, one per empty set I±t ;
a larger value for w decreases the number of calls to HomAut() at the expense
of larger key material. Practical experiments from [LMK+23, Figure 3] suggest
a rather small optimal window value w = 10, further discussed in Section 5.2.

Remark 3.1. In [LMK+23], a “flush” homomorphically applying τgδ is required
before moving to the second loop, as shown by the condition “[. . . ] or ℓ = 1” in
[LMK+23, Algorithm 3, Line 7]. Our rewriting and proof ([BJ25, Appendix B])
makes visible that τ−g can be applied at any time after handling the last non-
empty set I−t , whereas filling the gap with τgδ can be deferred to the second loop,
simply adjusting told as in Line 9. This often saves one HomAut() evaluation.

3.2 A New Traversal Windowed-Horner Method

Since n is typically small w.r.t. 2N , many sets I+t or I−t are empty, which implies
that It := I−t ∪I+t is often equal to either I+t or I−t . This suggests a better strategy
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Algorithm 3.1: Blind rotation w/automorphisms—Windowed-Horner

Input: c̃← (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1, ãi ∈

(
Z
/
2NZ

)× ∪ {0}; v ∈ Rq
Data: bskAUT and akHORN as in Eqns. (2.3) and (3.5) for a window size w ≥ 1
Output: c← GLWEs(x

−µ̃ · v) ∈ Rk+1
q with µ̃ = b̃−

∑n
i=1 ãisi

1. told ← 0, ACC←
(
0, . . . , 0, xb̃ · v(x−1)

)
/* i.e., ãold = −gN/2 = −1 */

2. for t = N/2− 1 down to 0 such that I−t ̸= ∅ do /* see Equation (3.2) */
3. δ ← (told − t) mod N/2, told ← t

/* Homomorphically apply τgδ using jumps of size at most w */
4. qδ ←

⌊
δ/w

⌋
, rδ ← δ mod w

5. for qδ times do ACC← HomAutgw
(
ACC, akHORN[w]

)
6. if rδ ̸= 0 then ACC← HomAutgrδ

(
ACC, akHORN[rδ]

)
/* Compute all external products for I−t */

7. for i ∈ I−t do
8. ACC← ACC⊛ bskAUT[i]

/* Apply τ−g as in second line of Equation (3.4), see Remark 3.1 */
9. told ←

(
told − 1

)
mod N/2, ACC← HomAut−g

(
ACC, akHORN[0]

)
/* Same loop as the first loop, but for (non-empty) sets I+t (Equation (3.1)) */

10. for t = N/2− 1 down to 0 such that I+t ̸= ∅ do
11. δ ← (told − t) mod N/2, told ← t
12. qδ ←

⌊
δ/w

⌋
, rδ ← δ mod w

13. for qδ times do ACC← HomAutgw
(
ACC, akHORN[w]

)
14. if rδ ̸= 0 then ACC← HomAutgrδ

(
ACC, akHORN[rδ]

)
15. for i ∈ I+t do
16. ACC← ACC⊛ bskAUT[i]

17. δ ← told, qδ ←
⌊
δ/w

⌋
, rδ ← δ mod w

18. for qδ times do ACC← HomAutgw
(
ACC, akHORN[w]

)
19. if rδ ̸= 0 then ACC← HomAutgrδ

(
ACC, akHORN[rδ]

)
20. return ACC

to enumerate
(
Z
/
2NZ

)×
, where closing the gap between two non-empty sets It’s

can be directly combined with a sign change. The main effect is to reduce E
[
δ
]
,

the average size of the gaps. As will be demonstrated, this enhances efficiency,
especially for smaller window sizes.

Doing so yields Algorithm 3.2, which exchanges the loops of Algorithm 3.1
by including the sign change, whenever needed, directly inside a unique loop
on t. The required automorphism keys are defined as

akTRAV :=
{
akTRAV[0]← kskτ−1(s)→s

}
∪{

akTRAV[±u]← kskτ±gu (s)→s

∣∣∣ u ∈ q
1, w′y

}
. (3.6)

Remark 3.2. We chose to always combine a possible sign change with the appli-
cation of τgrδ . When δ ̸= 0, it implies to modify the definition of qδ to

⌊
δ−1
w′

⌋
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Algorithm 3.2: BR w/automorphisms — Traversal Windowed-Horner

Input: c̃← (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1, ãi ∈

(
Z
/
2NZ

)× ∪ {0}; v ∈ Rq
Data: bskAUT and akTRAV as in Eqns. (2.3) and (3.6) for a window size w′ = w/2
Output: c← GLWEs(x

−µ̃ · v) ∈ Rk+1
q with µ̃ = b̃−

∑n
i=1 ãisi

1. ϵold ← +1, told ← N/2, ACC←
(
0, . . . , 0, x−b̃ · v(x)

)
2. for t = N/2− 1 down to 0 do

/* First consider same sign as ϵold, then flip if I−ϵoldt is not empty */
3. for ϵ ∈

{
ϵold,−ϵold

}
such that Iϵt ̸= ∅ do

/* Compute σ · gδ = ϵold · gtold/(ϵ · gt), update tracking values */
4. δ ← told − t, told ← t, σ ← ϵold/ϵ, ϵold ← ϵ

/* Apply τu for u = σ · gδ, see Remark 3.2 */
5. if δ = 0 then ACC← HomAut−1

(
ACC, akTRAV[0]

)
6. else
7. Write δ = qδ · w′ + rδ with rδ ∈

q
1, w′y and qδ ≥ 0

8. for qδ times do ACC← HomAutgw′
(
ACC, akTRAV[w′]

)
9. ACC← HomAutσ·grδ

(
ACC, akTRAV[σ · rδ]

)
/* Compute all external products for Iϵt */

10. for i ∈ Iϵt do
11. ACC← ACC⊛ bskAUT[i]

/* Finally, apply τu for u = ϵold · gtold */
12. if told = 0 and ϵold = −1 then ACC← HomAut−1

(
ACC, akTRAV[0]

)
13. else if told ̸= 0 then
14. Write δ = told = qδ · w′ + rδ with rδ ∈

q
1, w′y and qδ ≥ 0

15. for qδ times do ACC← HomAutgw′
(
ACC, akTRAV[w′]

)
16. ACC← HomAutϵold·grδ

(
ACC, akTRAV[ϵold · rδ]

)
17. return ACC

and rδ = δ − qδ · w′ to ensure rδ ∈
q
1, w′y so that akTRAV[σ · rδ] exists. Further,

the case δ = 0 can only occur when ϵ = −ϵold, i.e., σ = −1 inside the loop.

Proposition 3.3. Algorithm 3.2 is correct.

Proof. For t ∈
q
0, N/2

y
, define recursively q̃t ∈ Rq by q̃N/2 = v · x−b̃ and

q̃t = q̃t+1 · x
gt·
(∑

i∈I+t
si−

∑
i∈I−t

si

)
.

We inductively show that after each iteration, ACC contains a GLWE encryption
of τϵold·g−told

(
q̃t
)
.

First, ACC is initialized to a (trivial) GLWE encryption of x−b̃ · v(x), which is
indeed equal to τ+gN/2

(
q̃N/2

)
. Inside the loop, the induction hypothesis is pre-

served as long as both I+t and I−t are empty, since in this case q̃t = q̃told . Assume
now, for N/2 > t ≥ 0, that ACC contains a GLWE encryption of τϵold·g−told

(
q̃t+1

)
,
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Table 3.1: Measured expected number of automorphism key switches for Algo-
rithms 3.1 and 3.2 under two different parameters sets.

(a) For n = 458 and N = 1024.

w = 2w′ Alg. 3.1 Alg. 3.2 Ratio (%)

w = 2 625 578 92.5
w = 4 445 431 96.7
w = 6 396 390 98.4
w = 8 380 377 99.3
w = 10 373 371 99.5
w = 12 372 370 99.6
w = 14 372 370 99.7

(b) For n = 834 and N = 2048.

w = 2w′ Alg. 3.1 Alg. 3.2 Ratio (%)

w = 2 1232 1139 92.5
w = 4 857 827 96.5
w = 6 755 743 98.4
w = 8 721 715 99.2
w = 10 702 698 99.4
w = 12 698 696 99.7
w = 14 692 691 99.8

and exactly one Iϵt is non-empty for ϵ ∈ {ϵold,−ϵold}. Then, τσ·gδ (δ ≥ 1) is ho-
momorphically applied to ACC to obtain a GLWE encryption of τϵg−t

(
q̃t+1

)
, and

the following external products finally yield as expected a GLWE encryption of

τϵg−t
(
q̃t+1

)
· x

∑
i∈Iϵt

si = τϵg−t
(
q̃t+1 · x

gt
∑
i∈Iϵt

ϵsi
)
= τϵg−t

(
q̃t
)
.

When both I±t are non-empty, the previous reasoning is first applied on Iϵoldt ;
then for ϵ = −ϵold, we have δ = 0 so τ−1 is applied to ACC and external products
corresponding to indices in Iϵt finally yield a GLWE encryption of

τ−ϵold·g−t
(
q̃t+1 · x

ϵold·gt
∑
i∈I

ϵold
t

si
)
· x

∑
i∈Iϵt

si

= τϵg−t
(
q̃t+1 · x

gt
(∑

i∈Iϵt
ϵsi+

∑
i∈I−ϵt

(−ϵ)si
))

= τϵg−t
(
q̃t
)
,

which again is the induction hypothesis with Line 4 adjustments on ϵold and told.
Hence, after the loop, ACC contains a GLWE encryption of τϵold·g−told

(
q̃0

)
, imply-

ing the result since the last lines of the algorithm apply τϵold·gtold . ⊓⊔

For completeness, we provide in Tables 3.1(a) and 3.1(b) a numerical com-
parison of the expected number of automorphism key switches in Algorithm 3.1
(similar to [LMK+23, Algorithm 7]) vs. Algorithm 3.2 under two different pa-
rameter sets. The first set is taken from [LMK+23, Table 2] and the second set is
PARAM MESSAGE 2 CARRY 2 KS PBS GAUSSIAN 2M644 from TFHE-rs [Zam22], with
parameters (n,N, k) = (458, 1024, 1) and (n,N, k) = (834, 2048, 1), respectively.
For an easier comparison, we assume w = 2w′ so that in both cases the key
material includes w + 1 automorphism keys. These tables show that, although
both methods roughly converge to the same optimum, the new traversal method
always shows superior performance due to its ability to combine smaller jumps
on average with sign changes; in particular, for small values of w = 2w′.

4 Git commit 400ce27beb5bea8fdc68826ad437099ec62680d0, Sept. 25, 2024.
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4 Automorphism-Parametrized Techniques

We propose a generalized external product that seamlessly incorporates a ho-
momorphic automorphism evaluation on the input ciphertext. Specifically, by
using a modified GLWE⊛-like ciphertext, we show how the key switch associated
with the homomorphic automorphism evaluation can be absorbed within the ex-
ternal product. In essence, our new operator enables in a single step and at the
cost of a single external product, the execution of a homomorphic automorphism
evaluation—including its key switch—followed by an external product.

4.1 Automorphism-Parametrized External Product

We generalize the extended-GLWE (GLWE⊛, aka GGSW) ciphertexts, which are
used for computing external products, to embed information about the image of

the key under a given automorphism ψ; i.e., ψ = τu for a fixed u ∈
(
Z
/
mZ
)×

.

Definition 4.1. An Automorphism-Extended-GLWE ciphertext relatively to au-
tomorphism ψ and to gadget decomposition ∇ = ∇ℓ1,ℓ2 of a plaintext µ̄ ∈ Rq
under key s ∈ Rkq is denoted by GLWE⊛,ψ

s

(
µ̄
)
and defined as{

GLWE
∇ℓ1
s

(
−ψ(s1) · µ̄

)
, . . . ,GLWE

∇ℓ1
s

(
−ψ(sk) · µ̄

)
,GLWE

∇ℓ2
s

(
µ̄
)}

.

In particular, for a given decomposition ∇, it holds that GLWE⊛,id
s = GLWE⊛

s .

Such ciphertexts GLWE⊛,ψ enable the combination of a homomorphic eval-
uation of ψ on a GLWE input with an external product, without requiring an
intermediate key switch, as demonstrated below.

Definition 4.2 (Automorphism-parametrized external product). The
automorphism-parametrized external product, relatively to the automorphism ψ
and gadget decomposition ∇ = ∇ℓ1,ℓ2 , is denoted by ⊛ψ and defined as

⊛ψ : GLWEs

(
µ
)
×GLWE⊛,ψ

s

(
µ̄
)
−→ GLWEs

(
ψ(µ) · µ̄

)
,

where, for GLWEs

(
µ
)
=
(
a1, . . . ,ak, b

)
, the result is computed as〈

∇ℓ2ψ(b),GLWE
∇ℓ2
s

(
µ̄
)〉

+
∑k

j=1

〈
∇ℓ1ψ(aj),GLWE

∇ℓ1
s

(
−ψ(sk) · µ̄

)〉
.

In particular, for a given decomposition ∇, ⊛id coincides with ⊛.

The noise associated to this new operation is given by Proposition 4.3, which
essentially highlights a gain due to the removal of the key switch. It depends on
a constant C∞ which is set to 1 when m is a power of two. In the general case
where m is not a power of two, C∞ > 1 corresponds to the expansion factor
of Φm(x), e.g., C∞ = 2 when m is a prime p > 2 [MKMS24] or m = 3a [JW22],
and C∞ = 4 when m = 2b3a for b ≥ 2 [JW22]. Notably, for any automorphism ψ
and all w ∈ Rq, it holds that

∥∥ψ(w)
∥∥
∞ ≤ C∞ ·

∥∥w∥∥∞.
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Proposition 4.3. Let ∇ = ∇ℓ1,ℓ2 be a gadget decomposition of quality β∇ =(
β1, β2

)
and precision ε∇ =

(
ε1, ε2

)
, whose output values are uniform and cen-

tered around 0. Let ein and ē represent the error associated with valid samples
GLWEs

(
µ
)
and GLWE⊛,ψ

s

(
µ̄
)
, respectively. Then GLWEs

(
µ
)
⊛ψ GLWE⊛,ψ

s

(
µ̄
)

is a sample of GLWEs

(
ψ(µ) · µ̄

)
whose error has variance

σ2
⊛ψ ≤ C∞ ·

(∥∥µ̄∥∥2
2
· σ2

in +N
(
ℓ2
β2
2

12 + kℓ1
β2
1

12

)
· σ2

∇ +
∥∥µ̄∥∥2

2

(
ε22
12 + kN

ε21
12 · E[s

2
j,i]
))
.

Proof. Let L0 ∈ Rk×ℓ2q s.t. GLWE
∇ℓ2
s

(
µ̄
)
=
(
L0, b0

)
, i.e., the ℓ2 columns of L0

are the respective masks of each GLWEs(g2,iµ̄), and b0 = s · L0 + µ̄ · g2 + ē0.

Similarly, let for j ∈
q
1, k

y
, Lj ∈ Rk×ℓ1q s.t. GLWE

∇ℓ1
s

(
−ψ(sj) · µ̄

)
=
(
Lj , bj

)
,

where bj = s · Lj − ψ(sj) · µ̄ · g1 + ēj . For GLWEs

(
µ
)
=
(
a, b

)
, the resulting

ciphertext of the above-defined operation is
(
A,B

)
with{

A= ∇ℓ2ψ(b) · L
⊺

0 +
∑

1≤j≤k∇ℓ1ψ(aj) · L
⊺

j ∈ Rkq
B=

〈
∇ℓ2ψ(b), b0

〉
+
∑

1≤j≤k
〈
∇ℓ1ψ(aj), bj

〉
∈ Rq

.

Rearranging terms after expanding the definition of the bj ’s yields

B=
〈
A,s

〉
+ µ̄ ·

(〈
∇ℓ2ψ(b),g2

〉
−
∑

1≤j≤k ψ(sj) ·
〈
∇ℓ1ψ(aj),g1

〉)
+
(〈
∇ℓ2ψ(b), ē0

〉
+
∑

1≤j≤k
〈
∇ℓ1ψ(aj), ēj

〉)
,

hence the exact expression of the error term E= B−
〈
A,s

〉
−ψ(µ) · µ̄ is given by

E= µ̄ · ψ(ein) +
(〈
∇ℓ2ψ(b), ē0

〉
+
∑

1≤j≤k
〈
∇ℓ1ψ(aj), ēj

〉)
+ µ̄ ·

(
e∇ℓ2

(
ψ(b)

)
−
∑

1≤j≤k ψ(sj) · e∇ℓ1
(
ψ(aj)

))
,

where e∇ℓu (w) :=
〈
∇ℓuw,gu

〉
− w for u ∈ {1, 2} and any w ∈ Rq.

Polynomials output by the decomposition are supposed uniform and cen-
tered around 0, independently of ψ, and uncorrelated with error polynomials ēj .

Thus, the variance of e.g.,
〈
∇ℓ1ψ(aj), ēj

〉
is upper-bounded by ℓ1 ·C∞N · β

2
1

12σ
2
∇.

Similarly, the variance of the coefficients of µ̄ · ψ(ein) is given by
∥∥µ̄∥∥2

2
· C∞σ

2
in.

By hypothesis, the coefficients of e∇ℓu
(
w
)
have variance upper-bounded by

ε2u
12 .

Specifically, for the terms of the form µ̄ ·ψ(sj) ·e∇ℓ1
(
ψ(aj)

)
, the final variance is∥∥µ̄∥∥2

2
·C∞

(
σ2
sj
+E[sj ]2

)
·N ε21

12 . Bringing all of these together yields the result. ⊓⊔

4.2 Reducing Automorphism Key Switches in Blind Rotation

We now show how to leverage our new automorphism-parametrized external
product to reduce the number of key switches in the Traversal Windowed-Horner
method. In Algorithm 3.2, the transition from Iϵoldtold

to Iϵt involves a homomorphic



16 Olivier Bernard, Marc Joye

automorphism evaluation, which includes at least one automorphism key switch.
Roughly speaking, the new operation combines this homomorphic automorphism
evaluation with the first external product in Iϵt . In effect, this narrows the dis-
tance between two consecutive sets by eliminating the associated key switch.

For each gap addressed in this manner, e.g., corresponding to an automor-
phism ψ = τ±gδ , additional GLWE⊛,ψ-ciphertexts are required. This creates a
trade-off between the size of the keys (i.e., the size of the set of admissible gaps)
and reduced performance and increased noise growth (i.e., more key switches).
However, as shown in Section 5, around 63% of the gaps in Algorithm 3.2 are
covered by

{
τ−1, τ±g

}
and around 84% by

{
τ−1, τ±g, τ±g2

}
.

Formal description Let S denote the set of admissible automorphisms, and as-
sume that id ∈ S.5 For convenience, a dual set S∗ :=

{
(δ, ϵ)

∣∣ ϵ ∈ {±1}, τϵ·gδ ∈ S}
is defined, which encodes S in

(
Z
/
2NZ

)×
. In particular, by the assumption on S,

it follows that (0, 1) ∈ S∗. The associated keys are defined by

bskS-AUT :=
{
bskS-AUT

ψ [i]← GLWE⊛,ψ
s (xsi)

∣∣∣ i ∈ q
1, n

y
, ψ ∈ S

}
, (4.1)

and

akS-AUT :=
{
akS-AUT[0]← kskτ−1(s)→s

}
∪{

akS-AUT[±u]← kskτ±gu (s)→s

∣∣∣ u ∈ q
1, w′′y

}
. (4.2)

For a fixed i ∈
q
1, n

y
, it is important to note that bskS-AUT

ψ [i], ψ ∈ S, all share
the common term GLWE

∇ℓ2
s

(
xsi
)
. Although this term is repeated for notational

clarity, it implies that the size of each bskS-AUT[i] is
(
♯S · k + 1

)
Gadget-GLWE

ciphertexts, rather than ♯S · (k + 1) Gadget-GLWE ciphertexts.
The new jumping strategy is formalized in Algorithm 4.1. For a gap u = σ·gδ,

the approach involves finding the closest pair (δ∗, ϵ∗) ∈ S∗, going forward, and
thereafter decomposing the automorphism τu as ψ ◦ τv, where ψ = τϵ∗·gδ∗ ∈ S
and v = u · (ϵ∗ · gδ∗)−1. When the component τv is non-trivial, it is homomor-
phically applied to ACC with the windowed method as in Algorithm 3.2, which
requires at least one automorphism key switch, whereas ψ ∈ S is applied as part
of the new automorphism-parametrized external product ⊛ψ.

Remark 4.4. As with any other automorphism-based blind rotation, the first au-
tomorphism evaluation on ACC is entirely free. Therefore, knowing the first
(t0, ϵ0) in the loop s.t. Iϵ0t0 ̸= ∅, we can modify the initialization step by directly

setting ϵold = ϵ0, told = t0 and ACC =
(
0, . . . , 0, x−ub̃ · v(xu)

)
for u = ϵ0 · g−t0 .

Remark 4.5. In the specific case where both I±t are non-empty, δ∗ = told− t, and
the set S is not symmetric, i.e., it contains τu for some ±u = gtold−t but does
not necessarily include τ−u, it is preferable to first consider the sign ϵfirst that
will lead to the automorphism in S, which is not always ϵold, as done in Line 3.

5 While not strictly necessary, including id in S always yields similar or better trade-
offs and simplifies both the presentation and the description of automorphism keys.
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Algorithm 4.1: Blind Rotation: S-parametrized method

Input: c̃← (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1, ãi ∈

(
Z
/
2NZ

)× ∪ {0}; v ∈ Rq
Data: bskS-AUT and akS-AUT as defined in Equations (4.1) and (4.2) for a

window size w′′ and a set S of admissible automorphisms
Output: c← GLWEs(x

−µ̃ · v) ∈ Rk+1
q with µ̃ = b̃−

∑n
i=1 ãisi

1. ϵold ← +1, told ← N/2, ACC←
(
0, . . . , 0, x−b̃ · v(x)

)
/* see Remark 4.4 */

2. for t = N/2− 1 down to 0 such that I+t ∪ I−t ̸= ∅ do
3. ϵfirst ← ϵold if (told − t,+1) ∈ S∗ else −ϵold /* see Remark 4.5 */
4. for ϵ ∈

{
ϵfirst,−ϵfirst

}
such that Iϵt ̸= ∅ do

/* Compute σ · gδ = ϵold · gtold/(ϵ · gt), update tracking values */
5. δ ← told − t, told ← t, σ ← ϵold/ϵ, ϵold ← ϵ

/* Jumping strategy: find (δ∗, ϵ∗) ∈ S∗ alphabetically closest to (δ, σ) */
6. δ∗ ← max

{
(δ∗, ·) ∈ S∗

∣∣ δ∗ ≤ δ}, ϵ∗ ← σ if (δ∗, σ) ∈ S∗ else −σ
/* Jumping strategy: apply τv for v = σ · gδ/(ϵ∗ · gδ∗) */

7. if (δ − δ∗, σ/ϵ∗) = (0,−1) then ACC← HomAut−1

(
ACC, akS-AUT[0]

)
8. else if (δ − δ∗) ̸= 0 then
9. Write δ − δ∗ = qδ · w′′ + rδ with rδ ∈

q
1, w′′y and qδ ≥ 0

10. for qδ times do ACC← HomAutgw′′
(
ACC, akS-AUT[w′′]

)
11. ACC← HomAutσ/ϵ∗·grδ

(
ACC, akS-AUT[σ/ϵ∗ · rδ]

)
/* Jumping strategy: first external product parametrized by ψ = τϵ∗·gδ∗ */

12. ACC← ACC⊛ψ bskS-AUT
ψ

[
Iϵt [0]

]
/* Compute all remaining external products for Iϵt */

13. for i ∈ Iϵt \ {Iϵt [0]} do
14. ACC← ACC⊛ bskS-AUT

id [i]

/* Finally, apply τu for u = ϵold · gtold (see Remark 4.6) */
15. if ϵold = −1 then ACC← HomAut−1

(
ACC, akS-AUT[0]

)
16. if told ̸= 0 then
17. Write told = qδ · w′′ + rδ with rδ ∈

q
1, w′′y and qδ ≥ 0

18. for qδ times do ACC← HomAutgw′′
(
ACC, akS-AUT[w′′]

)
19. ACC← HomAutgrδ

(
ACC, akS-AUT[rδ]

)
20. return ACC

Remark 4.6. It is also worth noting that, when S \
{
τ±1

}
is symmetric, then

during the main loop only non-negative indices of akS-AUT are necessary. Conse-
quently, we modified the final steps of Algorithm 4.1, in particular Line 15, in
order to ensure they also only require akS-AUT[0]∪akS-AUT[1 . . . w′′]. Thus, in many
cases, akS-AUT can be made twice shorter than indicated in Equation (4.2).

Proposition 4.7. Algorithm 4.1 is correct.

Proof. The iteration invariant is the same as in Algorithm 3.2, i.e., after iter-
ation t, ACC contains a GLWE encryption of τϵold·g−told

(
q̃t
)
under key s. The

output is HomAutu(ACC) for u = ϵold · gtold, which yields GLWEs

(
v · x−b̃+⟨ã,s⟩)
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by induction. Note that the modified inner loop initialization (see Remark 4.5)
only modifies adaptively its order, but has no impact on correctness. ⊓⊔

Noise analysis The noise growth of Algorithm 4.1 is directly linked to the num-
ber of external products (whether automorphism-parametrized or not), which
is always n, and the number κ(w′′) of remaining automorphism key switches,
which gets smaller as ♯S grows.

Proposition 4.8. Let κ(w′′) be the number of automorphism key switches re-
quired by Algorithm 4.1. Then, using the same notations and gadget decomposi-
tions hypotheses as in Propositions 4.3 and 2.2, the error term of the output of
Algorithm 4.1 has variance

σ2
S-AUT ≤ n · s2⊛S

+ κ(w′′) · s2aut ,

where


s2⊛S
≤ C∞

(
N
(
ℓ2
β2
2

12 + kℓ1
β2
1

12

)
· σ2

∇ +
(
ε22
12 + kN

ε21
12 · E[s

2
j,i]
))

s2aut ≤ C∞

(
N
(
kℓks

β2
ks

12

)
· σ2

ks + kN
(
E[s2j,i] ·

ε2ks
12

))
.

Proof. We first prove the result in the (unlikely) case κ(w′′) = 0, i.e., when the
algorithm consists of a series of (automorphism-parametrized or not) external
products ⊛ψt , t ∈

q
1, n

y
, where ψt = τut ∈ S and ψn ◦ · · · ◦ ψ1 = id. Without

any loss of generality, we assume that the LWE key indexes have been reordered
so that the t-th operation ⊛ψt involves bsk

S-AUT

ψt [t] = GLWE⊛,ψt
s

(
xst
)
.

We proceed by expressing directly the final error term.6 Let Et be the error
term of ACC =

(
a1, . . . ,ak, b

)
after ⊛ψt . Using the same notations as in the

proof of Proposition 4.3, Et = xst · ψt
(
Et−1

)
+
(
E

(t)
⊛ + xst · E(t)

∇,ψt

)
, where E

(t)
⊛ =

〈
∇ℓ2ψt(b), ē

(t)
0

〉
+
∑

1≤j≤k

〈
∇ℓ1ψt(aj), ē

(t,ψt)
j

〉
E

(t)
∇,ψt = e∇ℓ2

(
ψt(b)

)
−
∑

1≤j≤k
ψt
(
sj
)
· e∇ℓ1

(
ψt(aj)

)
,

with e∇ℓu (w) :=
〈
∇ℓuw,gu

〉
− w for u ∈ {1, 2} and any w ∈ Rq. A simple

induction then yields, from E0 = 0 and E1 = E
(1)
⊛ , i.e., E

(1)
∇,ψ1

= 0,

En =

n∑
t=1

( n∏
a=t+1

xsaua+1···un
)
· τun···ut+1

(
E

(t)
⊛ + xst · E(t)

∇,ψt

)
.

We continue by looking at the case of one single automorphism key switch.
For a given t ∈

q
1, n

y
, assume ψt /∈ S can be decomposed as ψ∗

t ◦τvt where ψ∗
t ∈ S

6 Whenever C∞ > 1, applying n times Proposition 4.3 would result in an artificially
large factor Cn∞ in the upper bound. Contrary to the claim in [MKMS24, Page 11],
applying an automorphism alone does, in fact, affect the error by a factor of C∞.
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and akS-AUT contains a key corresponding to τvt ̸= id. From Proposition 2.2, the

noise term after HomAutτvt is then given by τvt
(
Et−1

)
+
(
E

(t)
ks +E

(t)
∇ks,τvt

)
, where E

(t)
ks =

∑
1≤j≤k

〈
∇ℓksτvt(aj), ē

(vt)
ks,j

〉
E

(t)
∇ks,τvt

= −
∑

1≤j≤k
τvt
(
sj
)
· e∇ℓks

(
τvt(aj)

)
,

with e∇ℓks (w) :=
〈
∇ℓksw,gks

〉
− w for any w ∈ Rq. After applying the ⊛ψ∗

t

operation, the formula for obtaining Et from Et−1 becomes (note the ψ∗
t stars)

Et = xst · ψt
(
Et−1

)
+
(
E

(t)
⊛ + xst · E(t)

∇,ψ∗
t

)
+ xst · ψ∗

t

(
E

(t)
ks + E

(t)
∇ks,τvt

)
.

In the general case, let A =
{
t ∈ J1, nK

∣∣ ψt /∈ S}. Then, for any fixed t ∈ A,
Algorithm 4.1 decomposes ψt as ψ

∗
t ◦τvt◦τ qtgw′′ where ψ∗

t ∈ S, τvt ̸= id (⇔ vt ̸= 1),

and akS-AUT contains a key corresponding to τvt . Adapting the previous discussion
to the case qt > 0, it is easy to verify that for such t ∈ A we have

Et = xst · ψt
(
Et−1

)
+ E

(t)
⊛ + xst · E(t)

∇,ψ∗
t
+ xst · ψ∗

t

(
E(t)ks,vt,qt

)
,

where E(t)ks,vt,qt
:=
(
E

(t)
ks + E

(t)
∇ks,τvt

)
+
∑qt
a=1 τvtτ

a−1
gw′′

(
E

(t,a)
ks + E

(t,a)
∇ks,τgw′′

)
captures

the errors from the required automorphism key switches when t ∈ A. By abuse
of notation, we let ψ∗

t = ψt also when t /∈ A, i.e., when ψt ∈ S. This allows us
to prove by induction that the final error term of ACC is given by

En =

n∑
t=1

( n∏
a=t+1

xsaua+1···un
)
·τut+1···un

(
E

(t)
⊛ +xst ·E(t)

∇,ψ∗
t
+1lt∈A·xst ·ψ∗

t

(
E(t)ks,vt,qt

))
.

It remains to bound the variance of En from this closed form.
First of all, the E

(t)
⊛ ’s (resp. E

(t,a)
ks ) can be considered as independent random

samples of a random variable E⊛ (resp. Eks), since the output distribution of
the gadget decomposition is independent of the automorphism ψ∗

t , and the de-
composed elements are combined with the bootstrapping keys errors. The same
argument applies for the decomposition error terms e∇ℓu (w) for any w ∈ Rq
and u ∈

{
1, 2, ks

}
, however the images of the GLWE key ψ

(
sj) are not indepen-

dent when t varies. In order to deal with this, we rewrite each ψ
(
sj
)
· e∇ℓu (w)

as ψ
(
sj · ψ−1

(
e∇ℓu (w)

))
. The second key point is to notice that all subsequent

automorphism applications (resp. multiplications by some power of x) are actu-
ally permutations (resp. rotations) of the error coefficients modulo xm − 1, so
that their variance is only multiplied once by C∞ when reducing modulo Φm.

Thus, it is sufficient to bound the variance of
〈
∇uw, ē

〉
and sj ·ψ

(
e∇ℓu (w)

)
,

for any u ∈
{
1, 2, ks

}
and w ∈ Rq. The result now follows from arguments

similar to those in the proof of Proposition 4.3. ⊓⊔

Comparison with related works In [LLW+24, Section 4, originally for NTRU] and
concurrently in [Lee24, Section 3], the authors describe an improved automor-
phism-based blind rotation, identified in [LLW+24] as “merging the symmetric
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sets”. Their method doubles the size of the keys, using both GLWE⊛
s (x

±si)
for each i ∈

q
1, n

y
. Algorithmically, this corresponds to the traversal method

where the loop on ϵ ∈ {±ϵold} is replaced by a choice of operand in the external
product conditioned on ϵ. This removes all homomorphic applications of complex
conjugation in the traversal method, which account for approximately 18% of the
total number of the key switches when using an optimal window size. By contrast,
the new S-parametrized method with S = {id, τ−1} also allows removing all
complex conjugations, thus using less keys to achieve the same performance level.
For instance, when k = 1, it needs (2k + 1) · n = 3n Gadget-GLWE ciphertexts,
whereas following the approach of [LLW+24, Lee24] requires 2(k + 1) · n = 4n
Gadget-GLWE ciphertexts. More notably, setting S = {id, τ±g} allows removing
about 46% of the key switches from [LMK+23] for about the same key size as
what is needed in [LLW+24, Lee24] to remove only 18% of those. This highlights
that our automorphism-parametrized external product provides a more effective
solution than the approach in [LLW+24, Lee24].

Furthermore, aiming for a method similar to the S-parametrized approach
with S =

{
τ±1, τ±g

}
, but via a natural generalization of [LLW+24, Lee24],7

would require not only the keys GLWE⊛(x±si), but also at least additional keys
GLWE⊛(x±g·si). For k = 1, this already amounts to 8n Gadget-GLWE cipher-
texts vs. 5n for the S-parametrized method. However, even with this allowed, it
still does not reach the performance of the S-parametrized method: since no auto-
morphism is applied during the external products, this generalized method can-
not handle more than two consecutive gaps of type ±g without key switch. In this
setting, our measurements show that this method brings only 60% of the perfor-
mance gains provided by the S-parametrized method (see also [BJ25, App.C]).

5 Analysis and Experiments

The complexity and noise analysis of the algorithms of this paper primarily re-
duce to evaluating the number of automorphism key switches performed, in ad-
dition to the n external products (whether automorphism-parametrized or not).

In previous works, this has been achieved using a rather loose worst-case up-
per bound (derived from) [LMK+23, Section 4.1], and with Monte Carlo simula-
tions as in [WWL+24, Section 4.2] or [LLW+24, Figure 2]. In this work, we pro-
pose a theoretical framework for assessing the performance of our new automor-
phism-parametrized blind rotation, as well as prior automorphism-based algo-
rithms. This framework is thoroughly validated through numerical experiments.

5.1 On Random Divisions of an Interval

We propose to reduce the problem of evaluating the number of automorphism key
switches to analyzing the distribution of gaps in a random cut (with repetitions)
of

q
0, B

y
,8 approximated by the continuous case

[
0, B

]
.

7 This has been recently formalized in a later work [ZWC25, Algorithm 6].
8 For instance, B = N in Algorithm 3.1 and B = N/2 in Algorithms 3.2 and 4.1.
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Consider n uniformly random variables X1, . . . , Xn sampled from
[
0, B

]
, and

denote their ordered values by X(i), such that 0 ≤ X(1) ≤ · · · ≤ X(n) ≤ B. For
convenience, define X(0) = 0 and X(n+1) = B, capturing the starting and final

points of the blind rotation loop. A random cut of
[
0, B

]
is given by the (n+1)

random gaps ∆i = X(i+1) −X(i), for i ∈
q
0, n

y
, constrained by

∑n
i=0∆i = B.

Average maximum distance In this context (see e.g., [DN03, Section 6.4]), the
joint probability density function of ∆i1 , . . . ,∆ir , for any r ∈

q
1, n

y
and choice

of the ij ’s, is known to be, for
∑
dij ≤ B,

f
(
di1 , . . . , dir

)
=

n!

Br(n− r)!
·
(
1− di1 + di2 + · · ·+ dir

B

)n−r
.

This yields, by integrating r-times on 0 ≤
∑r
j=1 cj ≤ B [DN03, Equation 6.4.3],

Pr
[
∆i1 ≥ c1, . . . ,∆ir ≥ cr

]
=

(
1−

∑r
j=1 cj

B

)n
.

The probability of the maximum to be greater than c ≤ B is given by the union
of all events ∆i ≥ c. By the inclusion/exclusion principle, this writes

Pr
[
max0≤i≤n

{
∆i

}
≥ c
]
=

∑
1≤u≤n+1
s.t. uc≤B

(−1)u−1 ·
(
n+ 1

u

)(
1− uc

B

)n
. (5.1)

The expectation is obtained by integrating this over all possible values of c, i.e.,

E
[
max0≤i≤n

{
∆i

}]
=

n+1∑
u=1

(−1)u−1 ·
(
n+ 1

u

)∫ B/u

0

(
1− ux

B

)n
dx

=
B

n+ 1
·
n+1∑
u=1

(
n+ 1

u

)
(−1)u−1

u
=

B

n+ 1
·
n+1∑
u=1

1

u
. (5.2)

The last equality may be proven by induction. Therefore, the average maximum
gap can be approximated by B

n+1

(
ln(n+ 1) + γ

)
, where γ ≈ 0.577 is the Euler–

Mascheroni constant, perfectly matching our experiments in the discrete case.

Average number of gaps of a given size Furthermore, we also need a more precise
estimation of the number Nt of gaps of size t ∈

q
0, B

y
. This can be obtained

from the continuous case as follows.

Let
(
Ut
)
for t ∈

q
0, B

y
be a partition of

[
0, B

]
enclosing integers with some

offset ω = ωn,B ∈
]
0, 1
[
, i.e., U0 :=

[
0, ω

]
, Ut :=

[
t−1+ω, t+ω

]
for t ∈

q
1, B−1

y

and finally UB :=
[
B − 1 + ω,B

]
. In addition, let Ñt = ♯

{
i ∈

q
0, n

y ∣∣ ∆i ∈ Ut
}
;

we heuristically assume that Ñt follows the same distribution as its discrete
counterpart Nt. We rely on the following result, scaled from

[
0, 1
]
to
[
0, B

]
.
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Proposition 5.1 ([Dar53, Equation 4.2]). Let W =
∑n
j=0 h(∆j) for any

integrable function h on
[
0, B

]
. Then

E
[
W
]
= (n+ 1) ·

∫ B

0

n
(
1− r

B

)n−1

h(r)
dr

B
.

Applying Proposition 5.1 for ht(r) = 1lUt(r), noting that Ñt =
∑n
j=0 1lUt

(
∆j

)
,

we derive the following heuristic approximation of E
[
Nt
]
, where Ut = [ut, vt]:

E
[
Nt
]
≈ E

[
Ñt
]
= (n+ 1) ·

[(
1− ut

B

)n − (1− vt
B

)n]
. (5.3)

This approximation is close to (n+1) ·
(
e−n·ut/B − e−n·vt/B

)
, which is generally

easier to work with in practice due to its simpler exponential form.

It remains to determine the appropriate offset ω. To do so, we calibrate it so
that the above-computed heuristic E

[
Ñ0

]
= (n+ 1)− (n+ 1)

(
1− ω

B

)n
matches

the formally proven E
[
N0

]
. In the discrete case, the average number of distinct

values for sampling n integers amongst B values is given by B−B(1− 1
B )n. This

is equivalent to having E
[
N0

]
= n−B +B(1− 1

B )n collisions. Hence, we get

ω = B −B
(
1 +B −B(1− 1/B)n

n+ 1

)1/n

. (5.4)

Remark 5.2. Using instead the approximations E
[
Ñ0

]
≈ (n+ 1) ·

(
1− e−nω/B

)
and E

[
N0

]
≈ n − B

(
1 − e−n/B

)
, we can obtain a simpler expression for ω.

Specifically, we get (n+1)·e−n/B·ω ≈ 1+B(1−e−n/B), so that ω ≈ − 1
x ln
(
1−e−x

x

)
for x = n

B . Assuming x = o(1), its Taylor expansion writes

ω ≈ 1
2 −

1
24 ·

n
B + 1

2880 ·
(
n
B

)3 − . . . ,
which provides an indication of how close ω is to 1

2 .

Numerical validation We experimentally measured E
[
Nt
]
for two sets of param-

eters (n,B): the ratio n
B in Figure 5.1(a) is relevant for analyzing Algorithm 3.1,

whereas the ratio n
B in Figure 5.1(b) pertains to the analysis of Algorithms 3.2

and 4.1. In both cases, the observed results closely match the theoretical pre-
dictions, exhibiting the same shape. In particular, the results clearly show the
exponential decay in the number of large gaps, which explains why a small set
of automorphism keys suffices for automorphism-based blind rotations.

In addition, we observe significantly more gaps of size 1 compared to colli-
sions. In practice, it is therefore more effective to handle gaps of size 1, e.g., with
the S-parametrized method using S =

{
id, τg

}
, rather than gaining (roughly

half of) the gaps of size 0 using complex conjugation.
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(a) For n = 465 and B = 1024. (b) For n = 834 and B = 1024.

Fig. 5.1: Expectation for Nt, averaged over 104 samples of n (discrete logarithms)
values modulo B vs. theoretical expectations obtained from Eqn. (5.3). Displayed
values stop after the first t s.t. E

[
Nt
]
< 1.

5.2 Theoretical Analysis of Automorphism-based Methods

We now apply the above discussion to analyze the average number of automor-
phism key switches required by Algorithms 3.1, 3.2 and 4.1. This readily provides
average-case estimations of their computational complexity and noise growth.

Let κ := κ(w) denote the random variable representing the number of key
switches for a given window size w. Although κ also implicitly depends on n
and B = N or N

2 , we omit these parameters since n and N are fixed across all
methods. Using a maximal window size w = B gives a lower bound on the average
number of automorphism key switches required by the method, denoted by κ∞.

In this section, we provide explicit formulas closely approximating E
[
κ(w)

]
and E

[
κ∞
]
for all algorithms. We also discuss which choice of the window value w

is optimal. In general, each algorithm is associated with a cost function h(w, t),
which represents the number of automorphism key switches required for a gap
of size t ∈ J0, BK using a window parameter w. Consequently, κ(w) is simply

computed as
∑B
t=0 h(w, t) ·Nt, where Nt denotes the number of gaps of size t.

Average number of key switches for Windowed-Horner methods The easiest case
is that of the Windowed-Horner method, as the sets I±t can be modeled directly9

as sampling n random values in J0, NK with the cost function h(w, t) =
⌈
t
w

⌉
.

Proposition 5.3. The expected number of automorphism key switches for a
window of size w in Algorithm 3.1 using akHORN satisfies

E
[
κHORN(w)

]
≈
(
1 +N

(
1− e−n/N

))
· 1

1− e−n/N ·w .

In particular, the best possible average value is E
[
κHORN
∞
]
≈ 1 +N(1− e−n/N ).

9 Formally, using the bijection ga 7→ a ∈
q
0, N

2
− 1

y
and −ga 7→ a+ N

2
∈

q
N
2
, N − 1

y
.
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Proof. For a gap of size t, exactly
⌈
t
w

⌉
automorphism key switches must be

performed, thus E
[
κHORN(w)

]
is given by

∑N
t=0

⌈
t
w

⌉
·E
[
Nt
]
, i.e., by Equation (5.3),

E
[
κHORN(w)

]
≈ (n+ 1) ·

N∑
t=1

⌈ t
w

⌉
·
((

1− ut
N

)n − (1− vt
N

)n)
.

Grouping the terms by values of
⌈
t
w

⌉
, and after canceling successive terms using

that ut = vt−1 for t ∈
q
1, N

y
(the last term with vN being 0), eventually yields

E
[
κHORN(w)

]
≈ (n+ 1) ·

∑⌈N/w⌉−1

k=0

(
1− vkw

N

)n
≈ (n+ 1)e−n/N ·ω · 1− e−n/N ·w·⌈N/w⌉

1− e−n/N ·w .

The last expression is obtained by plugging vkw = kw + ω and approximating
each

(
1 − vkw

N

)n
by e−n/N ·vkw = e−n/N ·ωe−n/N ·wk. The numerator is bounded

by
(
1− e−n

)
and

(
1− e−n(1+w/N)

)
, both of which are astronomically close to 1.

Finally, the offset ω is precisely defined so that (n+1)·e−ωn/N equals the expected
number of distinct values plus one, i.e., E

[
κHORN
∞
]
≈ 1 +N(1− e−n/N ). ⊓⊔

For the Traversal Windowed-Horner method, the sets It = I+t ∪ I−t can be
modeled as sampling n random values in

q
0, N2

y
, ignoring the signs. Since gap

jumps always combine with possible sign changes, all gaps of size t > 0 in this
model can be handled with exactly h(w′, t) =

⌈
t
w′

⌉
automorphism key switches,

regardless of which Iϵ is non-empty or processed first.

However, when both I+t and I−t are non empty, we must account for addi-
tional sign changes. Luckily, the expected number of occurrences of this event is
exactly given by the difference between the expected number of distinct values
for n samples amongst N values vs. N/2, i.e., N

(
1− e−n/N

)
− N

2

(
1− e−2n/N

)
.

This leads to the following proposition.

Proposition 5.4. The expected number of automorphism key switches for a
window of size w′ in Algorithm 3.2 using akTRAV satisfies

E
[
κTRAV(w′)

]
≈ N

2
·
(
1− e−n/N

)2
+
(
1 +

N

2

(
1− e−2n/N

))
· 1

1− e−n/N ·2w′ .

In particular, the best possible average value is E
[
κTRAV
∞
]
≈ 1 +N(1− e−n/N ).

As shown by Propositions 5.3 and 5.4, both methods converge to the same
optimum. However, we can theoretically quantify the improvement brought by
the Traversal method for a (fixed) equivalent amount of automorphism keys,
i.e., for w = 2w′. In that case, the difference simplifies to

E
[
κHORN(w)

]
− E

[
κTRAV(w′)

]
≈ N

2

(
1− e−n/N

)2 · ( 1

1− e−n/N ·w − 1
)
,
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which is strictly positive and decreases towards 0, as expected. This allows the
corresponding ratio to be expressed directly as

E
[
κTRAV(w′)

]
E
[
κHORN(w)

] ≈ 1− 1

2
· N(1− e−n/N )2

1 +N(1− e−n/N )
· e−n/N ·w

≈ 1− 1

2
·
(
1− e−n/N

)
· e−n/N ·w ,

which perfectly aligns with the experimental results presented in Table 3.1.

Average number of key switches for the automorphism-parametrized method As
for the automorphism-parametrized method, the number of automorphism key
switches depends on the specific set S of automorphisms utilized.

We first consider the simplest case where S contains all automorphisms τgk
for k up to K ≥ 0, and is symmetric, i.e., τa ∈ S ⇒ τ−a ∈ S. This basically
means that all gap jumps of size at most K, including those involving possible
sign changes, can be handled using our new parametrized external product.

Proposition 5.5. Suppose S =
{
τ±1, τ±g, . . . , τ±gK

}
for K ≥ 0. The expected

number of automorphism key switches for a window of size w′′ in Algorithm 4.1
using akS-AUT[0] ∪ akS-AUT[1 . . . w′′] satisfies

E
[
κS-AUT(w′′)

]
≈ 1

2
+
(
1 +

N

2

(
1− e−2n/N

))
· e−K·2n/N · 1

1− e−n/N ·2w′′ .

This tends towards E
[
κS-AUT
∞

]
≈ 1

2 +
(
1 + N

2 (1− e−2n/N )
)
· e−K·2n/N with w′′.

In other words, Proposition 5.5 shows that increasing K by 1 essentially
reduces the number of automorphism key switches by a factor of e2n/N , which
is approximately 2.26 for n = 834 and N = 2048 (resp. 2.48 for n = 465 and
N = 1024). This matches the measurements presented in Table 5.4.

Remark 5.6. The case K = 0, corresponding to S =
{
id, τ−1

}
, is computation-

ally equivalent to (though requiring less keys than) the proposal in [LLW+24]. In-
deed, both settings eliminate precisely the homomorphic complex conjugations.

Proof (of Proposition 5.5). The modeling is the same as for the Traversal method
with B = N

2 . Due to the shape of S, all gaps of size t ≤ K, including a possible

sign change, incur no cost. For gaps of size t > K,
⌈
t−K
w′′

⌉
automorphism key

switches are required (followed e.g., by a new external product parametrized
by τ±gK ). Thus, the expected number of automorphism key switches is

E[κS-AUT(w′′)] ≈ (n+ 1) ·
N/2∑

t=K+1

⌈
t−K
w′′

⌉
·
((

1− ut
N/2

)n
−
(
1− vt

N/2

)n)
.

Using the same reasoning as before, this simplifies to the right-hand side of the
result. Finally, since only the “positive” part of akS-AUT is used, applying a sign
change using akS-AUT[0] (Algorithm 4.1, Line 15) is required half of the time. ⊓⊔
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(a) For n = 465 and B = N = 1024. (b) For n = 465 and B = N/2 = 512.

(c) For n = 834 and B = N = 2048. (d) For n = 834 and B = N/2 = 1024.

Fig. 5.2: Optimal window size wopt, depending on the average distance α to κ∞.
Using B = N corresponds to Algorithm 3.1 and [LMK+23], whereas B = N/2
captures Algorithm 3.2 (w′

opt), Algorithm 4.1 for S =
{
τ±1

}
and [LLW+24].

We also explore various tradeoffs where S is not symmetrical. In particular,
if S only lacks τ−1 to be symmetrical, the situation is similar to Proposition 5.4
for the Traversal method: automorphism key switches using akS-AUT[0] are only

required when both I±t are non-empty, so N
2 ·
(
1− e−n/N

)2
is simply added.

The situation is trickier in general. We discuss the case S =
{
id, τg

}
, as other

cases appear to be of limited interest. Notably, this is the first scenario where
both the “negative” and “positive” parts of akS-AUT are required. As before, we

must add the complex conjugation count, i.e., N
2 ·
(
1 − e−n/N

)2
. However, we

also must account for size-1 gaps that necessitate a sign change. Empirically, we
observed that θ ≈ 60% of these size-1 gaps incur an additional sign change cost.

On the optimal window size In previous works, the optimal window size is
guesstimated as the point where some experimental graph sufficiently flattens.
For instance, [LMK+23, Figure 3] suggests using w = 10, while in an equivalent
setting [LLW+24, Figure 2(b)] instead suggests using w = 20.
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We propose a more robust definition of this optimal window size. Intuitively,
the optimal window size should be set such that no greater gaps occur on aver-
age. More formally, we define wopt as the smallest w s.t. E

[
κ(w)

]
≤ E

[
κ∞
]
+α,

where 0 < α ≤ 1 is fixed. Thus, let wopt (resp. w
′
opt, w

′′
opt) denote the correspond-

ing optimal window value w.r.t. Algorithm 3.1 (resp. Algorithm 3.2, resp. Al-
gorithm 4.1 for a symmetric set of automorphisms S = {τ±gk | 0 ≤ k ≤ K}).
Solving directly the condition for wopt, w

′
opt using Propositions 5.3 and 5.4 yields

the equivalent expression

w
(′)
opt =

⌈
B

n
· ln
(
1 +

1 +B
(
1− e−n/B

)
α

)⌉
, (5.5)

where B = N for wopt and B = N/2 for w′
opt. Likewise, using Proposition 5.5,

we obtain that for a given K ≥ 0, w′′
opt verifies

w′′
opt =

⌈
N

2n
ln

(
1 +

1 +N/2(1− e−2n/N )

α
· e−K·2n/N

)⌉
≈ w′

opt −K . (5.6)

Curves for w
(′)
opt (ommitting the ceiling) are given in Figure 5.2. We remark

that w′′
opt = w′

opt when K = 0, so that the figures with B = N/2 (w′
opt) also

encompass optimal window sizes for Algorithm 4.1 (w′′
opt) with S =

{
τ±1

}
as

well as [LLW+24] (see Remark 5.6). For example, for n = 465 and N = 1024,
Figure 5.2(a) shows that choosing wopt = 20 ensures α ≥ 0.043, whereas Fig-
ure 5.2(b) indicates that setting w′

opt = 8 as in [LLW+24] only yields α ≥ 0.215.
Conversely, targeting α = 0.25 yields resp. wopt = ⌈16.1⌉ and w′

opt = ⌈7.8⌉, ac-
cording to Equation (5.5). This also supports the intuition that wopt ≈ 2w′

opt,

since the average maximum gap is roughly halved from N/2
n/2 ln(n/2) to N/2

n lnn.

Remark 5.7. Using the approximation 1 + B(1 − e−n/B) ≈ (n + 1) · e−nωn,B/B
(see Remark 5.2), and assuming ωn,B < 1

2 and n < B, we easily obtain much
simpler—though not fully accurate—expressions:

wopt ≈
⌈
N
n · ln

n+1
α

⌉
, w′

opt ≈
⌈
N
2n · ln

n+1
α

⌉
,

w′′
opt ≈

⌈
N
2n · ln

n+1
α

⌉
−K .

As expected, these values are close to the average maximum gap when α = 1.
This yields a direct explanation of why small window sizes suffice in practice and
clearly shows that the optimal window grows logarithmically as α approaches 0.

Theoretical summary The performance of automorphism-based blind rotation al-
gorithms is summarized in Table 5.3 according to Propositions 5.3, 5.4 and 5.5.
As throughout this paper, the results are given for null or invertible mask
components. We also consider in the ak column that w′ = w/2 = w′′ + K
(see Remark 5.7) in order to ease comparisons. The number of (automorphism-
parametrized) external products is always exactly n and is therefore omitted.
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Table 5.3: Comparison of automorphism-based blind rotations w.r.t. evaluation
key material and best average number of automorphism key switches. For con-
cision, An/N denotes e−n/N , and experimental observations suggest θ ≈ 60%.

Keys size (♯GLWE∇) Avg. number of aut. key switches

bsk ak (E[κ∞], i.e., using w
(′,′′)
opt )

Telescoping (Fig. 2.1(b)) (k + 1)n kN min{n,N}
Wind.-Horner (Alg. 3.1) (k + 1)n k(w + 1) N · (1−An/N )
Traversal (Alg. 3.2) (k + 1)n k(2w′ + 1) N · (1−An/N )
[LLW+24, Alg. 2], 2(k + 1)n kw′ N

2
· (1−A2

n/N )

S-Aut, S = {τ±1} (2k + 1)n k(w′ + 1) N
2
· (1−A2

n/N )

S-Aut, S = {id, τg} (2k + 1)n k(2w′ − 1) N ·(1−An/N )− N
2
·θ
(
1−A2

n/N )2

S-Aut, S = {id, τ±g} (3k + 1)n kw′ N
2
·
(
A2
n/N−A4

n/N+(1−An/N )2
)

S-Aut, S = {τ±1, τ±g} (4k + 1)n kw′ N
2
· (1−A2

n/N ) ·A2
n/N

S-Aut, S = {τ±1, τ±g, τ±g2} (6k + 1)n k(w′ − 1) N
2
· (1−A2

n/N ) ·A4
n/N

S-Aut, S = {τ±gδ | δ < K} (2Kk + 1)n k(w′−K+2) N
2
· (1−A2

n/N ) ·A2(K−1)

n/N

5.3 Numerical Measurements

To demonstrate the impact of our techniques on automorphism-based blind ro-
tations, we conducted experiments to measure the average number of (extended
and classical) external products and automorphism key switches required by each
of our new variants, comparing their performance against [LMK+23, LLW+24].

The results are summarized in Table 5.4 for the two different parameter sets,
corresponding to those in Section 3, however using n = 465 instead of n = 458
for the first set, as in [LLW+24]. The optimal window values are computed from
Equations (5.5) and (5.6) under the rather stringent10 requirement that the

distance between κ
(
w

(′,′′)
opt

)
and the corresponding κ∞ does not exceed α = 0.25

on average. The number of automorphism key switches and operation counts are

then averaged over 104 random mask components in
(
Z
/
2NZ

)×
. Although ⊛

and ⊛S are counted separately to highlight the use of the new parametrized
external product, both operations are strictly equivalent computationally.

The results indicate that, with the same increase of the bootstrapping keys
as in [LLW+24], Algorithm 4.1 with S =

{
id, τ±g

}
already requires 37.1%

(resp. 35.5%) fewer key switches compared to [LLW+24] and 49.1% (resp. 46.4%)
fewer compared to [LMK+23]). More strikingly, with keys that are 25% smaller
than in [LLW+24], Algorithm 4.1 using the asymmetric set S =

{
id, τg

}
already

outperforms [LLW+24] by over 14.0% (resp. 13.3%). In particular, this clearly
demonstrates an advantage over using S =

{
τ±1

}
, as predicted from Figure 5.1.

Further trade-offs are also possible. With only a moderate increase of the
size of bskS-AUT, i.e., multiplied by 2.5 compared to [LMK+23] instead of 2 as
in [LLW+24], Algorithm 4.1 with S =

{
τ±1, τ±g

}
achieves a reduction of the

10 E.g., the choice w′′ = 8 made in [LLW+24] could correspond to any α ∈
[
0.22, 0.53

]
.
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Table 5.4: Experimentally measured number of regular (⊛), automorphism-
parametrized (⊛S) external products, and automorphism key switches (KS) for
automorphism-based blind rotations, averaged over 104 samples. The optimal

window values w
(′,′′)
opt are computed for α = 0.25.

(a) Parameters n = 465 and N = 1024, k = 1.

Method w
(′,′′)
opt

Keys
♯(⊛) ♯(⊛S) ♯(KS)

(♯GLWE∇)

Windowed-Horner (Alg. 3.1, [LMK+23]) 17 2n+ 18 465 0 375.8
Traversal Windowed-Horner (Alg. 3.2) ±8 2n+ 17 465 0 375.0
[LLW+24, Alg. 2] 8 4n+ 8 465 0 306.1

S-Aut, S = {τ±1} 8 3n+ 9 210 255 306.6
S-Aut, S = {id, τg} ±7 3n+ 15 306 159 263.1
S-Aut, S = {id, τ±g} 7 4n+ 8 159 306 192.5
S-Aut, S = {τ±1, τg} ±7 4n+ 15 91 374 195.4
S-Aut, S = {τ±1, τ±g} 7 5n+ 8 91 374 124.3
S-Aut, S = {id, τ±g, τ±g2} 6 6n+ 7 159 306 118.8
S-Aut, S = {τ±1, τ±g, τ±g2} 6 7n+ 7 91 374 50.6
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 3} 5 9n+ 6 91 374 20.9
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 4} 4 11n+ 5 91 374 9.0
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 5} 3 13n+ 4 91 374 4.3
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 6} 3 15n+ 4 91 374 1.9
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 7} 2 17n+ 3 91 374 1.5

(b) Parameters n = 834 and N = 2048, k = 1.

Method w
(′,′′)
opt

Keys
♯(⊛) ♯(⊛S) ♯(KS)

(♯GLWE∇)

Windowed-Horner (Alg. 3.1, [LMK+23]) 20 2n+ 21 834 0 688.5
Traversal Windowed-Horner (Alg. 3.2) ±10 2n+ 21 834 0 686.4
[LLW+24, Alg. 2] 10 4n+ 10 834 0 571.4

S-Aut, S = {τ±1} 10 3n+ 11 376 458 571.9
S-Aut, S = {id, τg} ±9 3n+ 19 264 570 495.5
S-Aut, S = {id, τ±g} 9 4n+ 10 264 570 368.7
S-Aut, S = {τ±1, τg} ±9 4n+ 10 149 685 380.8
S-Aut, S = {τ±1, τ±g} 9 5n+ 10 149 685 254.0
S-Aut, S = {id, τ±g, τ±g2} 8 6n+ 9 263 571 227.2
S-Aut, S = {τ±1, τ±g, τ±g2} 8 7n+ 9 149 685 112.5
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 3} 7 9n+ 8 149 685 50.1
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 4} 6 11n+ 7 149 685 23.0
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 5} 5 13n+ 6 149 685 10.9
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 6} 4 15n+ 5 149 685 5.4
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 7} 3 17n+ 4 149 685 3.1
S-Aut, S = {τ±gδ | 0 ≤ δ ≤ 8} 2 19n+ 3 149 685 1.9
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number of key switches of more than 59.4% (resp. 55.5%) relative to [LLW+24]
and 66.9% (resp. 63.1%) relative to [LMK+23]). Moreover, the last rows of the
tables illustrate the capability of our new S-parametrized method to approach
the computational efficiency of the AP bootstrapping while maintaining rea-
sonably sized keys. Indeed, considering keys only up to 9 times larger w.r.t.
[LMK+23], the average number of key switches can be squeezed down to only 2
or 3, whereas AP keys are more than 2 orders of magnitude larger for compara-
ble performance. As the convergence is quite fast, the set S =

{
τ±1, τ±g, τ±g2

}
yields an appealing middle ground: with a 3.5× increase in bskS-AUT compared to
[LMK+23], it eliminates 86.5% (resp. 83.6%) of the key switches of the Traversal
Windowed-Horner method.

As a final remark, we emphasize that while the proposed variants imply in-
creasing the size of the bootstrapping keys compared to [GINX16] or [LMK+23],
only (k + 1) GLWE∇ ciphertexts are ever needed for computing each external
product, whether parametrized or not. Those can easily be prefetched as soon
as the (mod-switched) mask components are known and sorted, therefore the
bandwidth requirements for our methods remain unchanged.

About absolute time improvements for the bootstrapping In each of the meth-
ods presented above, the entire bootstrapping procedure consists of n external
products alongside the automorphism key switches counted by our theoretical
complexity analysis in Propositions 5.3, 5.4 and 5.5. We obviously did not report
everywhere this constant number of external products (whether automorphism-
parametrized or not). However, from the discussion in Section 2 regarding the
respective cost ratio of a key switch and an external product, it is relatively
straightforward to derive the absolute runtime improvement by our method.

For example, according to Table 5.4(a), the Windowed-Horner method (Al-
gorithm 3.1, [LMK+23, Algorithm 7]) incurs a total bootstrapping cost of (at

least) 376·5/8+465
465 ≈ 1.51 times the cost of computing n = 465 external products

as would be the case using binary GINX; i.e., a 51% overhead. In contrast, our

method using S =
{
τ±1, τ±g, . . . , τ±g6

}
reduces this to 2·5/8+465

465 ≈ 1.003, effec-
tively eliminating this overhead —hence the title, and achieving (at least) a 34%
overall improvement in both performance and noise growth over [LMK+23], and
up to 38% for k = 1 and ℓ = 1, as mostly used in TFHE-rs. Identical results are
obtained for the second parameter set in Table 5.4(b).
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BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from
tensored homomorphic accumulator. In A. Joux, A. Nitaj, and T. Rachidi,
editors, Progress in Cryptology — AFRICACRYPT 2018, volume 10831 of
Lecture Notes in Computer Science, pages 217–251. Springer, Cham, 2018.
doi:10.1007/978-3-319-89339-6_13.

BIP+22. Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira,
and Nigel P. Smart. FINAL: Faster FHE instantiated with NTRU
and LWE. In S. Agrawal and D. Lin, editors, Advances in Cryptol-
ogy — ASIACRYPT 2022, Part II, volume 13792 of Lecture Notes in
Computer Science, pages 188–215. Springer, Cham, 2022. doi:10.1007/

978-3-031-22966-4_7.

BJ24. Olivier Bernard and Marc Joye. Approximate CRT-based gadget decompo-
sition and application to TFHE blind rotation. Cryptology ePrint Archive,
2024. URL: https://ia.cr/2024/909.

BJ25. Olivier Bernard and Marc Joye. Bootstrapping (T)FHE ciphertexts via
automorphisms: Closing the gap between binary and Gaussian keys. Cryp-
tology ePrint Archive, 2025. Full version. URL: https://ia.cr/2025/163.

CGGI20. Ilaria Chilotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, 2020. doi:10.1007/s00145-019-09319-x.

CJP21. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks. In
S. Dolev et al., editors, Cyber Security Cryptography and Machine Learn-
ing (CSCML 2021), volume 12716 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2021. doi:10.1007/978-3-030-78086-9_1.

Dar53. Donald A. Darling. On a class of problems related to the random division
of an interval. The Annals of Mathematical Statistics, 24(2):239–253, 1953.
doi:10.1214/aoms/1177729030.
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LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75:565–599, 2015.
doi:10.1007/s10623-014-9938-4.

https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.46586/tches.v2022.i4.661-692
https://doi.org/10.1007/978-3-031-07689-3_1
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.3390/math12182909
https://doi.org/10.3390/math12182909
https://doi.org/10.46586/tches.v2024.i3.418-451
https://doi.org/10.46586/tches.v2024.i3.418-451
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/s10623-014-9938-4


Bootstrapping (T)FHE Ciphertexts via Automorphisms 33

MKMS24. Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, and Adam Suhl.
Faster amortized FHEW bootstrapping using ring automorphisms. In
Q. Tang and V. Teague, editors, Public-Key Cryptography — PKC 2024,
Part IV, volume 14604 of Lecture Notes in Computer Science, pages 322–
353. Springer, Cham, 2024. doi:10.1007/978-3-031-57728-4_11.

MP21. Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like
cryptosystems. In M. Brenner, R. Player, and K. Rohloff, editors, 9th
Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy (WAHC 2021), pages 17–28. ACM Press, 2021. doi:10.1145/3474366.
3486924.

RAD78. Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. In R. A. DeMillo et al., editors, Foundations
of Secure Computation, pages 169–179. Academic Press, 1978. Available
at https://people.csail.mit.edu/rivest/pubs.html#RAD78.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009. doi:10.1145/
1568318.1568324.
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