
Published in C. Cid and N. Yanai, Eds., Advances in Information and Computer Security
(IWSEC 2025), vol. 16208 of Lecture Notes in Computer Science, pp. 45-64, Springer, 2025

Approximate CRT-Based Gadget Decomposition
for Fully Homomorphic Encryption

Olivier Bernard and Marc Joye

Zama, Paris, France
firstname.lastname@zama.ai

Abstract. Managing noise growth is a central challenge in fully homo-
morphic encryption (FHE). Gadget decomposition mitigates this by rep-
resenting elements as vectors whose inner product with a gadget vector
approximately reconstructs the original value. Radix-based decomposi-
tions support approximation but CRT-based ones have, so far, required
exactness. We introduce, for the first time, CRT-based gadget decompo-
sitions in the approximate setting, combining the benefits of approximate
decompositions with the structural advantages of CRT-based methods.
This enables efficient blind rotation and (programmable) bootstrapping
in TFHE using only native arithmetic while increasing parallelism. On
a typical FPGA (17-bit multipliers), our approach achieves a speedup of
over 2× and approximately 50% lower area than comparable radix-based
approximate designs. The methodology also reduces bandwidth, mem-
ory, and compute in settings with large ciphertext moduli (e.g., 128-bit),
benefiting both hardware and software implementations.

Keywords: Lattice-based cryptography · Fully homomorphic encryp-
tion (FHE) · Gadget decomposition · Blind rotation · Chinese re-
mainder theorem (CRT) · Number-theoretic transform (NTT)

1 Introduction

Fully homomorphic encryption (in short, FHE) [30, 18] is often regarded as the
holy grail of cryptography. Unlike traditional encryption methods, FHE allows
direct computation on encrypted data, without requiring prior decryption. The
result of the computation remains encrypted, ensuring end-to-end data security
throughout the process. We refer the reader to [20, 8] for excellent surveys on
fully homomorphic encryption.

Apart from a few exceptions, most known instantiations of FHE rely on
lattice-based cryptography, basing their security on the learning with errors
(LWE) problem [29] or its variants. As a result, the corresponding ciphertexts
must be noisy to ensure security. While noise is generally not a concern in stan-
dard encryption schemes, it requires careful management in the context of fully
homomorphic encryption. The main issue arises from the fact that noise within
ciphertexts grows as they are processed homomorphically. If the noise exceeds a
certain threshold, the ciphertext can no longer be decrypted correctly. There are

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4433-2333

2 O. Bernard, M. Joye

two primary strategies to address this challenge: (i) bootstrapping ciphertexts
and (ii) controlling noise growth during computations.

The concept of bootstrapping was introduced in Gentry’s seminal work in
2009 [17]. It consists in homomorphically evaluating the decryption circuit using
an encrypted ciphertext and an encrypted decryption key as inputs. The result
is a new ciphertext that encrypts the same plaintext—this process is also known
as recryption. Since the decryption removes noise, the noise in a bootstrapped
ciphertext is reset to a nominal level; i.e., the output ciphertext only contains
the noise resulting from the bootstrapping process.

An alternative or complementary strategy for dealing with the noise is to
ensure that the noise does not grow too quickly so that a larger number of homo-
morphic operations can be performed before bootstrapping becomes necessary.
A common technique for this is gadget decomposition [26, 6]: when multiplying
a noisy ciphertext by a scalar, the scalar is first decomposed with respect to a
small radix B. Specifically, if Enc denotes a homomorphic encryption algorithm,
the ciphertext C ← Enc(k · x) is obtained by writing k =

∑`
j=1 kj B

j−1 with
−bB/2c ≤ kj ≤ bB/2c and then evaluating

∑`
j=1 kj Enc(B

j−1 x) from the ` ci-
phertexts Enc(x),Enc(Bx), . . . ,Enc(B`−1x). The vector (k1, . . . , k`) is called the
gadget decomposition of k. A quick analysis shows that, compared to the direct
approach of getting Enc(k · x) as kEnc(x), the noise better behaves using the
gadget decomposition. Assuming that the noise in the input ciphertexts follows
a Gaussian error distribution N (0, σ2), the variance of the noise in the output
ciphertexts C ← kEnc(x) and C ←

∑`
j=1 kj Enc(B

j−1 x) is respectively of k2σ
and of

(∑`
j=1 k

2
j

)
σ—observe that as ` increases,

∑`
j=1 k

2
j � k2.

The gadget decomposition is not restricted to managing the noise in the
scalar multiplication of ciphertexts, it is also central in the design of most FHE
schemes as an auxiliary tool for certain FHE procedures; e.g., [6, 26, 5, 19, 1, 14,
15, 9, 11, 4]. Of special importance is the gadget decomposition when applied
to improve bootstrapping procedures. In particular, similar to [1, 14], the boot-
strapping in the TFHE scheme, building on [15], makes use of an accumulator
that is updated in a for-loop according to encryptions of the secret key bits.
This operation is referred to as blind rotation in [11]. It consists of a succession
of external products which comprise polynomial multiplications and gadget de-
compositions. The technique equally applies to the programmable version of the
bootstrapping [12]. On input an encryption of x, the output is an encryption of
f(x)—with a nominal level of noise as it is the output of a bootstrapping pro-
cedure. The regular bootstrapping corresponds to function f being the identity
map. A detailed description of the programmable bootstrapping with companion
algorithms can be found in [22].

An essential ingredient to efficiency of TFHE and its variants is to perform
only a radix-based gadget decomposition up to a certain precision; i.e., the least
significant digits in the decomposition are dropped. This has two immediate
benefits: (i) the performance of the (programmable) bootstrapping is greatly im-
proved as each external product within the blind rotation involves `-dimensional
polynomial vectors and (ii) the overall size of the bootstrapping keys is signif-

Approximate CRT-Based Gadget Decomposition 3

icantly reduced as it is proportional to ` (namely, the number of digits in the
radix-based gadget decomposition). Such an optimization seems however inher-
ently limited to radix or mixed-radix based decompositions [21, Section 4.2].

Alternative gadget decompositions have been considered, including repre-
sentations relying on the Chinese Remainder Theorem (CRT) [3, Section B.4].
Operations modulo the small factors can also be grouped in a two-level way,
as demonstrated in [25]. This is mostly useful for large ciphertext moduli as in
CKKS-like schemes [9]; see also [2] for an extension using a bivariate polynomials
formalism.

Chinese remaindering is a natural method for handling large integers using
small arithmetic chunks but it ought to be exact. Indeed, CRT-based gadget
decomposition are extremely sensitive to errors, as these are getting spread by
the inverse CRT isomorphism. It is therefore no longer possible to drop “dig-
its” in the decomposition. This has unfortunate consequences both in terms of
computational costs and of key sizes. In practice, that outweighs the benefits of
using a CRT-based decomposition in the first place.

Our techniques and results: CRT-based gadget decomposition and approximate
setting seem to be inherently incompatible. This work shows that this common
belief is unfounded. We propose and develop methods for approximate gadget
decompositions in a CRT-like manner. The proposed methods are generic and
rely only on efficient arithmetic on “arithmetic-unit words.” Being agnostic to the
selected parameters, they smoothly fit with the various flavors of the number-
theoretic transform (NTT) for polynomial multiplication.

As a concrete illustration, we demonstrate how plugging our approximate
CRT-based gadget decompositions allows performing the whole Blind Rotation
using only arithmetic modulo small moduli. An application to the programmable
bootstrapping of TFHE-like ciphertexts leads to a number of significant advan-
tages:
1. All arithmetic units can work completely independently in parallel, provided

they synchronize for the gadget decomposition itself, but only for this step.
2. The NTT/iNTT transforms modulo the ciphertext modulus q are replaced

by several transforms modulo smaller moduli, ideally that fit into a single
machine word. This is interesting since (i) the computational complexity of
these NTT/iNTT transforms also depends on M(q), i.e., on the word size
of q, and (ii) there is no need to lift everything up modulo q.

3. Including the twisting factors in the CRT encodings of the bootstrapping
keys and test polynomial (used to program the bootstrapping) further sim-
plifies the computation of the gadget decomposition itself, hence incurring
minimal cost.

Furthermore, in addition to important complexity benefits/improvements, the
resulting implementation also saves in both bandwidth and storage. In partic-
ular, being in the approximate setting, the bootstrapping keys are much more
compact.

4 O. Bernard, M. Joye

2 Preliminaries

Throughout the paper, elements in Z
/
qZ, the ring of integers modulo q, are

viewed as integers in the range
q
−
⌊
q
2

⌋
,
⌊
q
2

⌋y
, where b·c denotes the flooring

function. When integers modulo q are seen as integers, or more precisely by
their integer representatives, this is indicated by the lifting function; for an
integer a ∈ Z

/
qZ, this is written as

(
a mod q

)
Z or sometimes, more simply,

as
(
a
)
Z. Vectors are given in row representation and denoted by bold letters v.

Polynomials, as well as algebraic integers, are denoted by cursive letters a. If S
is a set, a $← S indicates that a is sampled uniformly at random in S. If χ is a
probability distribution, a← χ indicates that a is sampled according to χ.

2.1 Gadget Decomposition

Gadgets decompose elements as vectors of small pieces whose inner product
with a so-called gadget vector reconstructs (an approximation of) the original
elements. In the FHE context, these gadget decompositions allow controlling the
noise growth e.g., for the multiplication of a ciphertext by a scalar. The gadget
decomposition is called exact when the recomposing retrieves completely the
original element. As aforementioned, one important characteristic of the TFHE
scheme is to rely on an approximate gadget decomposition [10, 7], where only
an approximation of the original element is retrieved. This results in smaller
bootstrapping keys and improved bootstrapping performance.

We give here a formal generic definition to gadget-decompose elements. For
the sake of clarity, we address the case of number field elements, which covers
most instantiations of FHE schemes. It is useful to introduce some notation. A
number field K is a finite extension of the field Q of rational numbers. The ring
of integers R of K is the set of all algebraic integers contained in K. For an
integer q, the residue ring R

/
qR of R modulo q is denoted Rq. This general

setting encompasses two important sub-cases for FHE applications:
– K = Q, in which case R = Z and Rq = Z

/
qZ;

– K = Q(ζm) ∼= Q[x]
/〈

Φm(x)
〉
, in which case R = Z[ζm] ∼= Z[x]

/〈
Φm(x)

〉
and

Rq = (Z
/
qZ)[ζm] ∼= (Z

/
qZ)[x]

/〈
Φm(x)

〉
where ζm is any primitive m-th root

of unity (e.g., ζm = exp(2πi/m)) and Φm is the m-th cyclotomic polynomial.

Definition 1 (Adapted from [11, Definition 3.6]). Using the previous no-
tations, a gadget decomposition on Rq of level `, quality β, and precision ε is
given by:

1. a gadget vector g = (g1, . . . ,g`) ∈ R`
q;

2. an efficient algorithm ∇ := ∇β,ε
g : Rq →R` such that for any a ∈ Rq:

‖∇a‖∞ ≤ β and ‖a− 〈∇a,g〉‖∞ ≤ ε ,

where the infinity norms are always taken component-wise.

Gadget sub- or super-scripts are generally omitted for readability.

Approximate CRT-Based Gadget Decomposition 5

The definition naturally extends to other mathematical structures like the
real discretized torus Tq := 1

qZ
/
Z ⊂ T := R

/
Z by identifying Tq with Z

/
qZ

or, more generally, like its polynomial variant Tq[x]
/〈

Φm(x)
〉

by identifying it
with (Z

/
qZ)[x]

/〈
Φm(x)

〉
; cf. [22, Remark 3]. Alternatively, the gadget algorithm

with parameters (`, β, ε) can be directly defined as ∇β,ε
g : Tq[x]

/〈
Φm(x)

〉
→(

Z[x]
/〈

Φm(x)
〉)` for some gadget vector g ∈

(
Tq[x]

/〈
Φm(x)

〉)`, viewing the
set T[x]

/〈
Φm(x)

〉
as a Z[x]

/〈
Φm(x)

〉
-module.

Radix-based gadget decomposition: Let q be a modulus such that B` di-
vides q for some integers B > 1 and 1 ≤ ` ≤ blogB qc. A radix-based gad-
get decomposition of quality β and level ` is given by the gadget vector g =(

q
B , . . . , q

B`

)
.

For any a ∈ Z
/
qZ, the decomposition algorithm returns the ` most significant

digits of a in radix B, where a is viewed as an integer in
q
−
⌊
q
2

⌋
,
⌊
q
2

⌋y
. Each digit

is selected so that its amplitude is bounded by β =
⌊
B
2

⌋
; specifically, we write a ≡∑`

j=1 aj
q
Bj +R (mod q) with −bB/2c ≤ aj ≤ −bB/2c and |R| < q/(2B`). Such

a decomposition is always possible. Letting ∇a = (a1, . . . , a`), the corresponding
precision is then of ε =

⌊
q

2B`

⌋
. Indeed, we have a−〈∇a,g〉 ≡ a−

∑`
j=1 aj

q
Bj ≡ R

(mod q) and |R| ≤
⌊
q/(2B`)

⌋
. It is worth remarking that ε = 0 when q = B`.

The radix-B gadget decomposition extends to Rq by applying ∇ to each
coefficient of a polynomial a ∈ Rq; in this particular case, the components of
the above g are simply embedded in Rq, i.e., as scalars in Z

/
qZ ⊂ Rq, but in

general those could be any gj ∈ Rq.

Mixed-radix gadget decompositions generalize radix-B decompositions to
modulus q such that Q :=

∏`
j=1 qj divides q, for (non-necessarily distinct) fac-

tors qj . The gadget vector is defined as g =
(

q
q1
, q
q1q2

. . . , q
q1q2···q`

)
. The quality

is of β = bmaxj qj/2c and the precision is of ε =
⌊

q
2Q

⌋
. Radix-B gadget decom-

positions correspond to the special case q1 = q2 = · · · = q` = B.

CRT-based gadget decomposition: Instead of the radix-B representation,
the CRT-based gadget decomposition considers the Chinese Remainder Theorem
(CRT) isomorphism as the decomposition algorithm. Let q1, . . . , q` be pairwise
co-prime integers and let q =

∏
qj . The gadget vector is defined as

z = (z1, . . . , z`) where zj = q̃j ·
(
q̃−1
j mod qj

)
Z

for q̃j =
∏

1≤k≤`
k 6=j

qk.

The CRT maps any element a ∈ Z
/
qZ to

∇za := (a mod q1︸ ︷︷ ︸
=a1

, . . . , a mod q`︸ ︷︷ ︸
=a`

) ,

6 O. Bernard, M. Joye

and the inverse isomorphism is explicitly written as the following inner product
modulo q:

a ≡ 〈∇za, z〉 ≡
(∑`

j=1 aj · zj
)

(mod q) .

The correctness is easily verified by checking that zj ≡ 1 (mod qj) and that for
k 6= j, zk ≡ 0 (mod qj).

Therefore, for the CRT-based gadget decomposition, the gadget vector is z
as defined above, and the decomposition algorithm ∇z simply consists in the
` modulo operations. This yields an exact (ε = 0) gadget decomposition on
Z
/
qZ of level ` and quality β = maxi

⌊
qi
2

⌋
.

By nature, the CRT-based decomposition is intrinsically incompatible with
approximate decompositions. Indeed, dropping any CRT “digit” results in a big
error of order zi ≈ q/β.

The CRT-based gadget decomposition readily extends to Rq. Consider an
algebraic integer f ∈ Rq written as the polynomial f =

∑N−1
i=0 fi x

i with fi ∈
Z
/
qZ. Each polynomial coefficient of f is replaced with

fi 7−→ ∇zfi :=
(
fi mod q1︸ ︷︷ ︸

=fi,1

, . . . , fi mod q`︸ ︷︷ ︸
=fi,`

)
and the ` polynomials

f1 = f mod q1 =
∑N−1

i=0 fi,1 x
i

...
f̀ = f mod q` =

∑N−1
i=0 fi,` x

i

.

are formed. The vector ∇zf=
(
f1, . . . , f̀

)
∈ R` represents the CRT-based gad-

get decomposition of f. The corresponding gadget vector z ∈ R`
q is defined

with the same coefficients zi as in the integer case, but now viewed as constant
polynomials in Rq. It is easy to verify that f− 〈∇zf, z〉 ≡ 0 (mod q), and thus
ε = 0. Further, if β = maxi

⌊
qi
2

⌋
then ‖∇zf‖∞ ≤ β, where the infinity norm of a

polynomial is defined as the infinity norm of the vector of its coefficients.

2.2 Fully Homomorphic Encryption

Generalized LWE samples: Let R denote the ring of integers of some number
field and let Rq = R

/
qR. Let also χ denote some error distribution over R.

Given a private vector s ∈ Rk, a generalized LWE sample is a vector of the form(
a= (a1, . . . ,ak), r

)
∈ Rk+1

q where r = 〈a,s〉+ e

with a
$← Rk

q and e← χ. Given a fresh sample (a, r) ∈ Rk+1
q , (the encoding

of) a message µ in Rq, called plaintext, is encrypted under key s to form the
ciphertext

C← GLWEs(µ) := (a, r+ µ) ∈ Rk+1
q .

Approximate CRT-Based Gadget Decomposition 7

Two specialized instances are used:
1. Rq

∼= (Z
/
qZ)[x]

/〈
xN + 1

〉
with N a power of 2 and k = 1: this is referred

to as the Ring-LWE (or RLWE) assumption;
2. Rq = Z

/
qZ and k > 1: this is the original LWE assumption.

The matching samples are respectively called LWE samples and RLWE samples.

Related homomorphic operations: Once a gadget decomposition ∇ := ∇β,ε
g

has been fixed relatively to some gadget vector g = (g1, . . . ,g`) ∈ R`
q, it induces

an associated leveled encryption of a message m ∈ R, as

GLWE∇,g
s (m) =

(
GLWEs(gj ·m)

)
1≤j≤`

,

and its GGSW expansion

GGSWs(m) =
(
GLWE∇,g

s (−s1 ·m), . . . ,GLWE∇,g
s (−sk ·m),GLWE∇,g

s (m)
)
.

When k = 1, the associated leveled encryption and corresponding expansion
are respectively written RLWE∇,g

s (m) and RGSWs(m). Leveled encryptions are
sometimes denoted with a prime (′) e.g., as in [27] or with the Lev suffix e.g., as
in [13]; above notation is preferred as it makes more apparent the underlying
gadget decomposition.

Following [27], this allows defining certain homomorphic operations. These
operations do not depend, formula-wise, on the particular gadget decomposition.
Only their noise analysis may differ, depending on `, β, ε and on the distribution
of ∇(·).

Scalar product: The gadget decomposition gives rise to the definition of a scalar
product:

� : Rq ×R`
q →Rq,

(
f,h

)
7→ f�h := 〈∇gf,h〉 .

In particular, if the polynomial vector h is the gadget vector, we have f�g ≈ f.
Typically, this is extended to compute the product of a known element α ∈

Rq with an encryption of a message m to get an encryption of α · m. Letting
∇α = (α1, . . . , α`), it can be seen that

α� GLWE∇,g
s (m) :=

〈
∇α,GLWE∇,g

s (m)
〉
= GLWEs(α ·m) .

By evaluating
(
(α · gj) � GLWE∇,g

s (m)
)
1≤j≤`

, one so gets GLWE∇,g
s (α · m) as

an output.

External product: The external product allows computing the GLWE encryption
of the product of two encrypted messages, as

GLWEs(µ1)~GGSWs(m2)

:=
(∑k

j=1 aj � GLWE∇,g
s (−sj ·m2)

)
+ b� GLWE∇,g

s (m2)

= GLWEs(µ1 ·m2 + e ·m2)

8 O. Bernard, M. Joye

where
(
a1, . . . ,ak, b =

∑k
j=1 aj · sj + µ1 + e

)
expands the input GLWEs(µ1).

The result is a GLWE encryption of µ1 · m2 if message m2 is small so that
‖e ·m2‖∞ ≈ ‖e‖∞. The external product is asymmetric in the sense that one
of its operand is a GLWE ciphertext whereas the other is a GGSW ciphertext
with (k + 1)` components.

3 An Approximate CRT-Based Gadget Decomposition
In this section, we propose to realize an approximate CRT-based gadget de-
composition via a decomposition which is half-way between CRT-based and
mixed-radix-based gadget decompositions. It relies on a two-congruence Chinese
Remainder Algorithm, as described in [28, Section 2.2], and on a classical CRT
decomposition. At high level, the modulus is decomposed into a high part and
a low part, which serve as a basis for the mixed-radix decomposition, wherein
the low part will be dropped. The low and high parts are further decomposed
using the CRT representation. Intuitively, the size of the low part controls the
precision ε of the decomposition, whilst the size of the CRT moduli controls its
quality β.

3.1 Motivation
Using the CRT gadget decomposition outlined in Section 2.1, any f ∈ Rq may
be expressed exactly as f = 〈∇zf, z〉 mod q. However, some applications only
require an approximate expression f̃ for f, provided that f̃ satisfies ‖f−f̃‖∞ ≤ ε
for some given bound ε. One such example is when a ciphertext is gadget-
decomposed. The lower part contains noise; a full gadget decomposition boils
down at some point to uselessly decompose noise. We illustrate this in the case
of LWE ciphertexts for simplicity but the same carries over e.g., RLWE cipher-
texts or other types of ciphertexts. Consider an LWE-type ciphertext C =

(
a =

(a1, . . . , an), b = 〈a, s〉+ µ+ e
)
∈ (Z

/
qZ)n+1 where µ = bq/tcm encodes a mes-

sage m ∈ Z
/
tZ, s ∈ {0, 1}n is the secret key, and noise e ∈ Z is sampled accord-

ing to Gaussian distribution N (0, σ2). The phase and error functions of C are
respectively defined by ϕs(C) = b− 〈a, s〉 mod q and Err(C) =

(
ϕs(C)− µ

)
Z.

Let C̃ := 〈∇gC,g〉 mod q = (ã, b̃). Noting that

ϕs(C̃) ≡ ϕs(C̃ −C) + ϕs(C) ≡ b̃− b− 〈ã− a, s〉+ ϕs(C)

≡ b− 〈a, s〉+ ϕs(C) (mod q)

for some variables a ∈ J−ε, εKn and b ∈ J−ε, εK and assuming that a and b
are uniformly distributed, the variance of the noise error in the recomposed
ciphertext C̃ verifies

Var
(
Err(C̃)

)
= Var

((
ϕs(C̃ − µ

)
Z

)
= Var

(
b− 〈a, s〉

)
+Var

(
Err(C)

)
= Var(b) + n

(
Var(aj)Var(sj) + Var(aj)E[sj]2

+Var(sj)E[aj]2
)
+ σ2

= 1
6 (n+ 2)ε(ε+ 1) + σ2 ≤ n+2

3 ε2 + σ2

Approximate CRT-Based Gadget Decomposition 9

since Var(b) = Var(aj) =
1
12

(
(2ε+1)2 − 1

)
= 1

3ε(ε+1), Var(sj) = 1
4 , E[sj] = 1

2 ,
and E[aj] = 0.

As a result, if the bound ε on the approximation error ‖C̃ − C‖∞ is for
example set such that ε ≤ σ

√
3/(n+ 2) then Var

(
Err(C̃)

)
≤ 2σ2; i.e., the

impact on the noise error is very low. Regarding the performance, the impact
can however be substantial as will be apparent in Section 4.

3.2 Description

Formally, let q = Q · Qlow with gcd
(
Q,Qlow

)
= 1, where the high part Q =∏`

j=1 qj (resp. low part Qlow =
∏k

j=1 q
′
j) is a product of ` (resp. k) pairwise

co-prime integers q1, . . . , q` (resp. q′1, . . . , q′k).
The definition of the gadget vector for our approximate CRT-based gadget

decomposition is similar to what it would be for an exact CRT reconstruction,
but omitting the coefficients corresponding to the divisors of Qlow, i.e.,

w =
(
w1, . . . , w`

)
∈ R`

q ,

where
wj = QlowQ̃j ·

((
QlowQ̃j

)−1
mod qj

)
Z

and Q̃j =
Q

qj
. (1)

The approximate CRT-based gadget decomposition of f=
∑N−1

i=0 fi x
i ∈ Rq is

then given by the `-tuple

∇wf=
(
f1, . . . , f̀

)
∈ R` ,

where, for 1 ≤ j ≤ `,fj =
∑N−1

i=0 fij x
i for fij ∈ Z

/
qjZ defined by the congruence

fij ≡ fi −
k∑

u=1

Qlow
q′u
·
((

Qlow
q′u

)−1 · fi mod q′u

)
Z

mod qj . (2)

We stress that computing ∇w never involves arithmetic operations mod-
ulo integers bigger than the chosen divisors of Qlow and Q. Indeed, the sum
indexed by u in Equation (2) has no dependency in j: for all divisors q′u of
Qlow, the part modulo q′u of each term can be computed beforehand by units
working solely modulo q′u. Once these values are disclosed to units working
modulo divisors qj of Q, the products with the precomputed twisting terms{

Qlow
q′1

mod qj , . . . ,
Qlow
q′k

mod qj

}
can be directly performed modulo qj .

Proposition 1. The gadget vector w given by Equation (1) and the associated
decomposition algorithm ∇w given by Equation (2), define a level-` gadget de-
composition on Rq of quality and precision given by the following bounds, for all
f∈ Rq:

‖∇wf‖∞ ≤ β = max1≤j≤`

⌊ qj
2

⌋
and ‖f− 〈∇wf,w〉‖∞ ≤ ε = k ·

⌊
Qlow
2

⌋
,

where the infinity norms are understood coefficient-wise.

10 O. Bernard, M. Joye

Remark 1. Recall that the congruence classes fij ’s are typically represented as
integers in

q
−
⌊ qj

2

⌋
,
⌊ qj

2

⌋y
. Any reasonable choice of representatives is also pos-

sible, in which case the bounds given in Proposition 1 might be slightly worse.

Proof (of Proposition 1). The only non-immediate statement is relative to the
precision of the gadget decomposition. Let f̃ := 〈∇wf,w〉 =

∑`
j=1 wj ·fj mod q.

Extracting the Qlow factor from the wj ’s yields that f̃ can be written as Qlow ·(
Fmod Q

)
Z, where

F :=
∑̀
j=1

Q̃j ·

(
fj

Qlow
· Q̃−1

j mod qj

)
Z

mod Q .

Thus, by the CRT applied to the high part using gcd
(
Qlow, Q

)
= 1, for all

j ∈ J1, `K we have that F≡ fj
Qlow

(mod qj). Now, let S be the polynomial whose
coefficients are given by the inner sum indexed by u in Equation (2), i.e., S :=∑k

u=1 Q̃
′
u ·
((

Q̃′
u

)−1 · f mod q′u

)
Z
, where Q̃′

u = Qlow
q′u

for u ∈ J1, kK, so that
fj ≡ f− S (mod qj) for all j ∈ J1, `K. The first key observation about S is
that, by the CRT applied to divisors of Qlow, S≡ f (mod Qlow). Hence,

(
f−S

)
is actually divisible by Qlow, which in turn implies f̃ = Qlow ·

(
F mod Q

)
Z =

Qlow ·
(
f−S
Qlow

mod Q
)
Z
= f− S mod q. The second key observation about S is

that its coefficients have amplitude bounded by ‖S‖∞ = ‖f− f̃‖∞ ≤ k ·
⌊
Qlow
2

⌋
,

yielding the result. ut

Remark 2. In order to give more intuition about the proof, it seems interesting
to mention that S is “almost” equal to

(
fmod Qlow

)
. In fact, S is congruent

to
(
fmod Qlow

)
by the CRT, but the reduction step modulo Qlow would not be

computable directly modulo another qj and would therefore involve arithmetic
modulo Qlow. Skipping this reduction modulo Qlow is precisely what induces an
approximation error which scales linearly in k.

4 Application to the Blind Rotation

The blind rotation is the costliest part of the (programmable) bootstrapping
phase of TFHE-like schemes. Starting from a noisy LWE ciphertext, it consists in
essence in applying iteratively an encrypted CMux operation on an accumulator,
controlled by extended encryptions of the components of the initial LWE key,
which constitute the bootstrapping keys.

In this section, we specialize it to the case where LWE keys are binary and
to 2N -th cyclotomic rings of the form R ∼= Z[x]

/〈
xN + 1

〉
. As the gadget de-

composition is a low-level primitive, our new approximate CRT-based gadget
decomposition also applies to broader settings, as other key distributions [23],
e.g., ternary, other rings R [24], e.g., m-th cyclotomic rings where m is a prime
or is of the form 2a · 3b, or R-modules of rank greater than 1.

Approximate CRT-Based Gadget Decomposition 11

4.1 GINX Blind Rotation
Let q be the ciphertext modulus, let Rq = R

/
qR ∼= (Z

/
qZ)[x]

/〈
xN + 1

〉
be

the 2N -th cyclotomic ring modulo q and let t be the plaintext modulus. The
Blind Rotation starts from an LWE encryption of dimension n of an encoding
µ ∈ Z

/
2NZ of a message m ∈ Z

/
tZ, i.e., from

LWEs(µ) =
(
a, b = 〈a, s〉+ µ+ e

)
∈ (Z

/
2NZ)n+1 ,

where the noise e follows a sufficiently large Gaussian distribution and the key s is
supposed to be binary, i.e., s = (s1, . . . , sn) ∈ {0, 1}n. In particular, we consider
that the Modulus Switching from q to 2N has previously been done.

Bootstrapping keys: Suppose a gadget decomposition ∇ := ∇g of level ` has
been fixed relatively to a gadget vector g =

(
g1, . . . ,g`

)
∈ R`

q. The encrypted
CMux operations are enabled by RGSW encryptions associated to g of the bits
of s under a key s ∈ Rq. More precisely, the bootstrapping keys associated to g
are hence defined, for i ∈ J1, nK, by

bsk[i] = RGSWs(si) =

((
RLWEs

(
gj · (−s · si)

))
1≤j≤`

,
(
RLWEs(gj · si)

)
1≤j≤`

)
.

We let bsk[i]1 (resp. bsk[i]2) denote the leveled encryption of −ssi (resp. si),
i.e., the first (resp. second) part of bsk[i]. Further, each leveled part is also
indexed by j, so that e.g., bsk[i]2,j refers to RLWEs(gj · si).

Test polynomial: A so-called test polynomial enables the programmability in
GINX bootstrapping. Suppose for simplicity that t is even and that function
f : Z

/
tZ→ Z

/
tZ is negacyclic; i.e., f(x) = −f

(
x+ t

2

)
. The test polynomial can

be then defined as

v =
⌊
q
t

⌋
·
N−1∑
i=0

f
(⌊
i · t

2N

⌉)
· xi ∈ Rq .

For our purpose, it is sufficient to know that a suitable v ∈ Rq encoding f is
given and that the Blind Rotation eventually computes an RLWE encryption of
v ·x−µ−e, with nominal noise, from the LWE encryption of an encoding of m. In
particular, if e is not too large, the constant coefficient of the output contains
an encryption of an encoding of f(m).

Encrypted CMuxes: The core operation in the loop of the Blind Rotation is
the encrypted CMux gate, which starts from a RLWE encryption C of some m

and outputs a RLWE encryption C′ of xsiai ·m. Concretely, this is achieved by
computing

C′ ← C+
((

xai − 1
)
· C
)
~ RGSWs

(
si
)
,

noting that xsiai ·m is equal to m if si = 0, and to xai ·m if si = 1.
This works in particular because the multiplication of C by xai is actually a

negacyclic permutation of the coefficients of C that does not induce any noise
growth.

12 O. Bernard, M. Joye

Computing the Blind Rotation loop: At very high level, the Blind Rotation starts
from a trivial noiseless RLWE encryption Acc =

(
0, v · x−b

)
∈ R2

q, and then
sequentially applies n times the above-defined CMux gate, as depicted in Algo-
rithm 1.

Algorithm 1 GINX Blind Rotation with binary keys (high level)
Require: LWEs(µ) =

(
a, b = 〈a, s〉+ µ+ e

)
, bootstrapping keys bsk[1 . . . n].

Ensure: A ciphertext in RLWEs

(
v · x−µ−e

)
1: Acc←

(
0, v · x−b

)
∈ R2

q

2: for 1 ≤ i ≤ n do
3: Acc← Acc +

(
(xai − 1) · Acc

)
~ bsk[i]

4: end for
5: return Acc

In order to get a better understanding of our improvements, we have to
dive further into implementation details. Polynomial multiplications in the ring
(Z
/
qZ)[x]

/〈
xn+1

〉
are carried out with the number-theoretic transform (NTT);

see e.g., [16, Chapter 8].
The external product ~ can be decomposed in two steps:

1. a gadget decomposition∇g, applied to both polynomial parts of Acc, and cor-
responding to the given bootstrapping keys, returning a vector of ` degree-N
(small) polynomials;

2. for each of the two resulting vectors of polynomials, an inner product with
the parts of the appropriate leveled component of the bootstrapping key.

For all currently known gadget decompositions, the former must be performed
in the coefficient domain, whereas the multiplication of degree-N polynomials,
where N is relatively big, requires working in the Fourier or NTT domain.
Hence, the vast majority of the computational cost of the Blind Rotation is
actually devoted to perform several forward and backward NTTs modulo the
ciphertext modulus q, at each loop iteration.

The detailed course of operations is given in Algorithm 2. It uses an ac-
cumulator Acc and an auxiliary register Aux in the coefficient domain, both
representing RLWE ciphertexts and whose respective parts are indexed by 1 and
2 respectively. Variables that live in the NTT domain are highlighted by hats,
e.g., Âux1 = NTTq

(
Aux1

)
; this notation is justified by the fact that these trans-

forms can always be done in-place. In particular, bootstrapping keys are given
directly in the NTT domain as b̂sk[i]a,j = NTTq

(
bsk[i]a,j

)
. The Hadamard prod-

uct of two values in the NTT domain, aka point-wise multiplication, is written
using ?. Finally, the operator Rotk	 denotes a (right) negacyclic rotation by k

positions, i.e., for any m ∈ Rq and any integer k, we have Rotk	 m = xk · m
(mod xN + 1).

Complexity and noise analysis: From the detailed GINX Blind Rotation in Algo-
rithm 2, it is relatively easy to derive its computational complexity. Let M(q) be

Approximate CRT-Based Gadget Decomposition 13

Algorithm 2 GINX Blind Rotation with binary keys (detailed)
Require: Test polynomial v encoding f , bootstrapping keys b̂sk[1 . . . n] in the NTT

domain modulo q, LWEs(µ) =
(
a, b = 〈a, s〉+ µ+ e

)
,

Ensure: A ciphertext in RLWEs

(
v · x−µ−e

)
1: Acc1, Acc2 ←

(
0,Rot−b

	 v
)
∈ R2

q . Acc ∈ RLWEs

(
v · x−b

)
2: for 1 ≤ i ≤ n do
3: Aux1, Aux2 ←

(
Rotai

	 Acc1 − Acc1, Rotai
	 Acc2 − Acc2

)
. Aux =

(
xai − 1

)
· Acc

/* Gadget Decompositions */
4: ∇Aux1[1 . . . `]← ∇g Aux1

5: ∇Aux2[1 . . . `]← ∇g Aux2 . ∇Aux = ∇gAux

/* Inner products of polynomial vectors */
6: ∇̂Aux1[j]← NTTq

(
∇Aux1[j]

)
for j = 1, . . . , `

7: ∇̂Aux2[j]← NTTq

(
∇Aux2[j]

)
for j = 1, . . . , `

8: Âux1, Âux2 ←
∑̀
j=1

∇̂Aux1[j] ? b̂sk[i]1,j + ∇̂Aux2[j] ? b̂sk[i]2,j
. Âux = NTTq

(
Aux ~ RGSWs(si)

)
9: Aux1, Aux2 ←

(
iNTTq(Âux1), iNTTq(Âux2)

)
/* Update accumulator */

10: Acc1, Acc2 ←
(
Acc1 + Aux1, Acc2 + Aux2

)
. Acc ∈ RLWEs

(
v · x−b+

∑
1≤t≤i atst

)
11: end for
12: return Acc =

(
Acc1, Acc2

)
. Acc ∈ RLWEs

(
v · x−µ−e

)

the complexity of one modular multiplication in Z
/
qZ on a w-bit word machine.

For each of the n iteration of the loop, Algorithm 2 computes:

– two negacyclic rotations in Rq, i.e., at most 4N additions/subtractions mod-
ulo q;

– 2N gadget decompositions of level ` of integers modulo q;
– 2` forward NTTs and 2 backward iNTTs modulo q, each costing O

(
N log1+ε N ·

M(q)
)
;

– 4`N ·M(q) for the point-wise multiplications, using that the bootstrapping
keys are given directly in the NTT domain, and 2(`−1)N additions modulo q.

Therefore, the most expensive operations are the NTT/iNTT transforms. Al-
though, the 2` NTTs (resp. the 2 iNTTs) can be done independently in parallel,
thus the critical path of the whole algorithm is n ·O

(
2N log1+ε N ·M(q)

)
.

As for the noise, we refer to the thorough analysis in [11, Theorem 4.3].
For our purposes, it is sufficient to retain that for given fresh RGSW ciphertext
parameters (dimension and noise distribution) and a given level of gadget de-
composition, the noise distribution of the output mainly depends on the quality
(β) of the considered gadget decomposition.

14 O. Bernard, M. Joye

4.2 Using the Approximate CRT-Based Gadget Decomposition

In Algorithm 2, the gadget decomposition computations, when instantiated with
the classical (mixed-)radix gadget decompositions, require the complete recon-
struction of Acc modulo q beforehand, which can be undesirable when q is several
machine words long. On the other hand, using an (exact) CRT-based gadget de-
composition requires elevating the level of the gadget decomposition, which im-
plies an increased computational cost and bootstrapping keys size. We now show
that thanks to our approximate CRT-based gadget decompositions, the whole
Blind Rotation can be performed using only arithmetic modulo small moduli,
effectively replacing all multi-words modular multiplications by several paral-
lelizable smaller ones. Those units can work independently in parallel, with the
only requirement that they synchronize data before and after the gadget decom-
position step. We also present a modified CRT encoding of the bootstrapping
keys that simplify the computation of the decomposition itself.

The resulting complete Blind Rotation algorithm is detailed in Algorithm 3
and thoroughly explained in the following paragraphs.

Let q,Q =
∏`

j=1 qj , Qlow =
∏k

j=1 q
′
j be as in Section 3. We further assume

that we have (`+k) arithmetic units, each of them performing arithmetic modulo
its dedicated modulus. Arithmetic units handling divisors q′u | Qlow (resp. qj | Q)
of the low part (resp. high) of q are called low units (resp. high units). Notation
(‖d|q:) means that the instruction can be performed independently in parallel
by all arithmetic units corresponding to the subscript; conversely (Sync:) marks
a synchronization point where units send and receive data.

The decomposition algorithm is also fixed to ∇ := ∇w, as defined by Equa-
tion (2), and bootstrapping keys bsk[1 . . . n] are now the RGSW encryptions
associated to w of the bits of s under a key s ∈ Rq.

Test polynomial and bootstrapping keys encodings: As done in Algorithm 2,
the bootstrapping keys can be given directly in the NTT domain modulo q.
However, we can further consider their modular reduction modulo each divisor
of q, which commutes with the NTT/iNTT transform, i.e., for any f ∈ Rq,
d ∈

{
q1, . . . , q`, q

′
1, . . . , q

′
k

}
,

NTTd

(
fmod d

)
= NTTq

(
f
)

mod d .

Hence, each of the arithmetic units only receives a fraction of the bootstrapping
keys, namely the part modulo its dedicated working modulus d, i.e., b̂sk[1 . . . n]
(mod d).

Remark 3. Since
∑

1≤j≤` log qj +
∑

1≤u≤k log q
′
u = log q, the total size of these

modular keys is equivalent to the size of the original keys, especially when the
moduli dividing q are specifically chosen so that their size fits one (or several)
machine words.

A second transformation comes from a technique used in order to simplify the
computation of our new gadget decomposition, given in Equation (2). Indeed, we

Approximate CRT-Based Gadget Decomposition 15

Algorithm 3 GINX Blind Rotation using approximate CRT-based gadget de-
composition
Require: LWEs(µ) =

(
a, b = 〈a, s〉+ µ+ e

)
, and ∀d ∈ {q′u}u∈J1,kK ∪ {qj}j∈J1,`K:

– Test polynomial v(d) using the modified CRT encoding as in Equation (4),
– Bootstrapping keys b̂sk[1 . . . n](d) in the NTT domain modulo d using the mod-

ified CRT encoding as in Equation (3).
Ensure: A CRT-encoded ciphertext C∈ RLWEs

(
v · x−µ−e

)
/* Initialize accumulator in the modified CRT encoding (wCrt) */

1: ‖d|q: Acc(d)
1 , Acc(d)

2 ←
(
0,Rot−b

	 v(d)
)
∈ Rd . Acc ∈ wCrt

(
RLWEs

(
v · x−b

))
2: for 1 ≤ i ≤ n do
3: ‖d|q: Aux(d)

1 , Aux(d)
2 ←

(
Rotai

	 Acc(d)
1 − Acc(d)

1 , Rotai
	 Acc(d)

2 − Acc(d)
2

)
. Aux =

(
xai − 1

)
· Acc (in wCrt)

/* Synchronized Gadget Decompositions */
4: Sync: Low units send Aux(q′u)

1 , Aux(q′u)
2 , u ∈ J1, kK to every high units

5: ‖qj |Q: ∇Aux1[j]← Aux(qj)

1 −
∑

1≤u≤k
Qlow
q′u
·
(
Aux(q′u)

1

)
Z mod qj

6: ‖qj |Q: ∇Aux2[j]← Aux(qj)

2 −
∑

1≤u≤k
Qlow
q′u
·
(
Aux(q′u)

2

)
Z mod qj .

∇Aux = ∇wAux
7: Sync: Broadcast ∇Aux[1 . . . `] to obtain

(
∇Aux[1 . . . `]

)
Z mod d, for all d | q.

/* Inner products of polynomial vectors: for all d dividing q */
8: ‖d|q: ∇̂Aux1[j]

(d) ← NTTd

(
∇Aux1[j] mod d

)
for j = 1, . . . , `

9: ‖d|q: ∇̂Aux2[j]
(d) ← NTTd

(
∇Aux2[j] mod d

)
for j = 1, . . . , `

10: ‖d|q: Âux
(d)
1 , Âux

(d)
2 ←

∑̀
j=1

∇̂Aux1[j]
(d) ? b̂sk[i]

(d)
1,j + ∇̂Aux2[j]

(d) ? b̂sk[i]
(d)
2,j

11: ‖d|q: Aux(d)
1 , Aux(d)

2 ←
(
iNTTq(Âux

(d)
1), iNTTq(Âux

(d)
2)

)
. Aux← wCrt

(
Aux ~ RGSWs(si)

)
/* Update all CRT shares of the accumulator */

12: ‖d|q: Acc(d)
1 , Acc(d)

2 ←
(
Acc(d)

1 + Aux(d)
1 , Acc(d)

2 + Aux(d)
2

)
. Acc ∈ wCrt

(
RLWEs

(
v · x−b+

∑
1≤t≤i atst

))
13: end for
14: ‖q′

u|Qlow : Acc(q′u)
1 , Acc(q′u)

2 ← (τ ′
u)

−1 ·
(
Acc(d)

1 , Acc(d)
2

)
. from wCrt to Crt

15: return Acc =
(
Acc1, Acc2

)
. Acc ∈ RLWEs

(
v · x−µ−e

)

16 O. Bernard, M. Joye

remark that the twisting factors τ ′u :=
((

Qlow
q′u

)−1
mod q′u

)
do not depend on the

coefficient being gadget decomposed, nor do they depend on a specific target qj .
Further, for any constant modular integer a ∈ Z

/
q′uZ and any polynomial f ∈

Rq′u
, we have that

a ·NTTq′u

(
f
)
= NTTq′u

(
af
)

mod q′u .

Hence, we can include these factors straight into the CRT encodings of the
bootstrapping keys and test polynomial modulo q′u | Qlow, so that when entering
the gadget decomposition itself, the multiplication by τ ′u has already been taken
care of by the previous steps.

Therefore, the new bootstrapping keys for our approximate CRT-based gad-
get decomposition are given by, for all i ∈ J1, nK,{

b̂sk[i](qj) = NTTqj

(
bsk[i] mod qj

)
for all qj dividing Q

b̂sk[i](q
′
u) = NTTq′u

(
τ ′u · bsk[i] mod q′u

)
for all q′u dividing Qlow

. (3)

Remark 4. Due to the fact that the gadget decompositions always happen before
incorporating the bootstrapping keys, the initialization of Acc also needs to
include this encoding. This can be added as an explicit initialization extra step,
or by requiring the test polynomial v to be given in this modified CRT encoding
as done in Algorithm 3, i.e., as(

{τ ′u · v mod q′u}u∈J1,kK, {v mod qj}j∈J1,`K

)
. (4)

Likewise, Acc comes out of the loop in this modified CRT encoding, so a correc-
tion step removing the τ ′u factors is needed before returning from Algorithm 3.

Computation of our approximate CRT-based gadget decomposition: Though all
arithmetic units need to be synchronized for the computation of our approxi-
mate CRT-based gadget decomposition, low and high arithmetic units have very
different roles.

Using the modified CRT encoding described above, the input to the gadget
decomposition is a polynomial f, shared across low and high arithmetic units as({

τ ′u ·f mod q′u
}
u∈J1,kK,

{
f mod qj

}
j∈J1,`K

)
.

The values of f−
∑k

u=1
Qlow
q′u
·
(
τ ′ufmod q′u

)
Z mod qj must be computed for all

j ∈ J1, `K, as described by Equation (2). This implies the following steps:

– Low units send their polynomial f′
u = τ ′u ·f (mod qu) to all high units;

– Consider j ∈ J1, `K; for the k incoming polynomials f′
u, compute Qlow

q′u
·
(
f′
u

)
Z

(mod qj) (see Remark 5), and add them to the existing register containing
f (mod qj);

– At this point, each of the high units contains one of the ` elements of ∇wf; it
remains to broadcast these ` polynomials to everyone, i.e., both to low and
other high units.

Approximate CRT-Based Gadget Decomposition 17

We stress that, at the end of this process, every arithmetic unit contains a share
of a plain CRT encoding of ∇wf, i.e., without any additional factors τ ′u on low
moduli q′u | Qlow.

Remark 5. Every time an integer a1 is sent from an arithmetic unit working mod-
ulo d1 and received by an arithmetic unit working modulo d2, where d1, d2 | q,
it involves an implicit lift-and-reduce operation to obtain a2 =

(
a1
)
Z (mod d2).

Assuming all chosen moduli are equally-sized, this can be done efficiently by
adding ±d2 whenever |a1| ≥

⌊
d2

2

⌋
,
⌊
d2

d1

⌋
times at most. Ideally, all such quotients

should be kept below 2, and as close to 1 as possible.

Complexity and noise analysis: Roughly speaking, using the approximate CRT-
based gadget decomposition allows trading operations in Z

/
qZ for operations in

Z
/
dZ for all of the (k+`) chosen divisors of q. Assuming all moduli d ∈ {q′u}∪{qj}

have balanced size around log q
k+` , we therefore expect a gain in total bit complexity

of magnitude at least

M(q)∑
d∈{q′u}∪{qj} M(d)

≈ (k + `)ω−1 , (5)

where M(d) = dlog2w de
ω is the complexity1 of a modular multiplication in Z

/
dZ

on a w-bit word machine. Likewise, the critical path is expected to shrink in
similar proportions.

It remains to estimate the complexity of computing the approximate CRT-
based gadget decomposition. There are 2 polynomials of degree N to gadget-
decompose; to this end:

– each high unit, e.g., the one working modulo qj , performs k ·(2N) (negligible)
lift-and-reduce operations q′u → qj , u ∈ J1, kK;

– each incoming polynomial f′
u (mod qj) is multiplied by the same, precom-

puted, constant Qlow
q′u

(mod qj), i.e., k·(2N) modular multiplications in Z
/
qjZ,

j ∈ J1, `K;
– broadcasting the resulting 2` polynomials again involves (negligible) lift-and-

reduce operations, ` · 2(`− 1)N (resp. k · 2`N) on the high units (resp. low
units) side.

Thus, the approximate CRT-based gadget decomposition is computationally neg-
ligible compared to the NTT/iNTT operations and inner point-wise multiplica-
tions.

Finally, the noise analysis in [11, Theorem 4.3] easily adapts to our gadget
decomposition, of quality β = max1≤j≤`

⌊ qj
2

⌋
and precision ε ≤ k ·

⌊
Qlow
2

⌋
by

Proposition 1.
1 As the number of words for q is relatively small, say less than 10 at the very most,

it is not unreasonable to instantiate this by ω = log2 3 ≈ 1.58 (neglecting modular
reductions).

18 O. Bernard, M. Joye

Example 1. As a concrete example, let R be the 212-th cyclotomic ring of degree
N = 2048, and assume one wants to implement the Blind Rotation on an FPGA
whose multipliers are 17 bits long [31]. The list of NTT-friendly primes p ≡ 1
(mod 2N), p < 217, is{

12 289, 40 961, 61 441, 65 537, 86 017, 114 689
}

.

A typical ciphertext modulus q in TFHE is approximately 64 bits and the (radix-
based) gadget decomposition typically has precision above 30 bits. Hence, we
can instantiate our approximate CRT-based gadget decomposition with ` = 2,
q = q′1 · q′2 · q1 · q2 using

q′1 = 114 689, q′2 = 86 017, q1 = 65 537, q2 = 61 441 .

Note that q = 39723809512452587521 ≈ 265.1 and that qmax
qmin
≈ 1.87, ensuring

efficient lift-and-reduce operations with at most one conditional subtraction.
Emulating a non-native multiplication modulo a 64-bit (i.e., 4 words) integer

is likely to cost at least 9 multiplications of 17-bit operands with depth at least 2
or 3, plus modular reduction costs. Meanwhile, Algorithm 3 allows replacing each
such multiplication by 4 parallel multiplications of 17-bit operands, with depth
exactly one. Therefore, in practice it is expected to gain a factor 2.25 ≈ 40.58

in the total number of multiplications and running time, for an hardware usage
approximately halved.

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 297–314. Springer (2014). https://doi.org/10.1007/
978-3-662-44371-2_17

2. Belorgey, M.G., Carpov, S., Gama, N., Guasch, S., Jetchev, D.: Revisiting
key decomposition techniques for FHE: Simpler, faster and more generic. In:
Chung, K.M., Sasaki, Y. (eds.) Advances in Cryptology – ASIACRYPT 2024,
Part I. LNCS, vol. 15484, pp. 176–207. Springer (2024). https://doi.org/10.1007/
978-981-96-0875-1_6

3. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored ho-
momorphic accumulator. In: Joux, A., et al. (eds.) Progress in Cryptology –
AFRICACRYPT 2018. LNCS, vol. 10831, pp. 217–251. Springer (2018). https:
//doi.org/10.1007/978-3-319-89339-6_13

4. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: Faster
FHE instantiated with NTRU and LWE. In: Agrawal, S., Lin, D. (eds.) Advances in
Cryptology – ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 188–215. Springer
(2022). https://doi.org/10.1007/978-3-031-22966-4_7

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptol-
ogy – CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer (2012). https:
//doi.org/10.1007/978-3-642-32009-5_50

https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-981-96-0875-1_6
https://doi.org/10.1007/978-981-96-0875-1_6
https://doi.org/10.1007/978-981-96-0875-1_6
https://doi.org/10.1007/978-981-96-0875-1_6
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50

Approximate CRT-Based Gadget Decomposition 19

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory 6(3),
13:1–13:36 (2014). https://doi.org/10.1145/2633600, earlier version in ITCS 2012

7. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology – ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 3–32. Springer
(2019). https://doi.org/10.1007/978-3-030-34618-8_1

8. Cheon, J., Costache, A., Cruz Moreno, R., Dai, W., Gama, N., Georgieva, M.,
Halevi, S., Kim, M., Kim, S., Laine, K., Polyakov, Y., Song, Y.: Introduction to
homomorphic encryption and schemes. In: Lauter, K., Dai, W., Laine, K. (eds.)
Protecting Privacy through Homomorphic Encryption, pp. 3–28. Springer (2021).
https://doi.org/10.1007/978-3-030-77287-1_1

9. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
– ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 409–437. Springer (2017).
https://doi.org/10.1007/978-3-319-70694-8_15

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
3–33. Springer (2016). https://doi.org/10.1007/978-3-662-53887-6_1

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020).
https://doi.org/10.1007/s00145-019-09319-x

12. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Dolev, S., et al. (eds.) Cyber
Security Cryptography and Machine Learning (CSCML 2021). LNCS, vol. 12716,
pp. 1–19. Springer (2021). https://doi.org/10.1007/978-3-030-78086-9_1

13. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M.,
Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021, Part III. LNCS, vol.
13092, pp. 670–699. Springer (2021). https://doi.org/10.1007/978-3-030-92078-4_
23

14. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in
less than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer (2015).
https://doi.org/10.1007/978-3-662-46800-5_24

15. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
Generalized worst-case to average-case reductions and homomorphic cryptosys-
tems. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology – EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 528–558. Springer (2016). https:
//doi.org/10.1007/978-3-662-49896-519

16. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, 3rd edn. (2013). https://doi.org/10.1017/CBO9781139856065

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing. pp. 169–178.
ACM Press (2009). https://doi.org/10.1145/1536414.1536440

18. Gentry, C.: Computing arbitrary functions of encrypted data. Communications of
the ACM 53(3), 97–105 (2010). https://doi.org/10.1145/1666420.1666444

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,

https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-77287-1_1
https://doi.org/10.1007/978-3-030-77287-1_1
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-49896-5 19
https://doi.org/10.1007/978-3-662-49896-5 19
https://doi.org/10.1007/978-3-662-49896-5 19
https://doi.org/10.1007/978-3-662-49896-5 19
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444

20 O. Bernard, M. Joye

R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 75–92. Springer (2013). https://doi.org/10.1007/978-3-642-40041-4_
5

20. Halevi, S.: Homomorphic encryption. In: Lindell, Y. (ed.) Tutorials on the Foun-
dations of Cryptography, pp. 219–276. Springer (2017). https://doi.org/10.1007/
978-3-319-57048-8_5

21. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. In: Evans, D., et al. (eds.) 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 783–798.
ACM Press (2017). https://doi.org/10.1145/3133956.3133976

22. Joye, M.: SoK: Fully homomorphic encryption over the [discretized] torus.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(4),
661–692 (2022). https://doi.org/10.46586/tches.v2022.i4.661-692

23. Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with ex-
tended keys. In: Dolev, S., et al. (eds.) Cyber Security, Cryptology, and Ma-
chine Learning (CSCML 2022). LNCS, vol. 13301, pp. 1–18. Springer (2022).
https://doi.org/10.1007/978-3-031-07689-3_1

24. Joye, M., Walter, M.: Liberating TFHE: Programmable bootstrapping with general
quotient polynomials. In: Brenner, M., et al. (eds.) 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography (WAHC 2022). pp. 1–11. ACM
Press (2022). https://doi.org/10.1145/3560827.3563376

25. Kim, M., Lee, D., Seo, J., Song, Y.: Accelerating HE operations from key decom-
position technique. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryp-
tology – CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 70–92. Springer (2023).
https://doi.org/10.1007/978-3-031-38551-3_3

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer (2012). https://doi.org/
10.1007/978-3-642-29011-4_41

27. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In:
Brenner, M., et al. (eds.) 9th Workshop on Encrypted Computing & Applied Ho-
momorphic Cryptography (WAHC 2021). pp. 17–28. ACM Press (2021). https:
//doi.org/10.1145/3474366.3486924

28. Pei, D., Salomaa, A., Ding, C.: Chinese Remainder Theorem: Applications in
Computing, Coding, Cryptography. World Scientific Publishing Company (1996).
https://doi.org/10.1142/3254

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM 56(6), 34:1–34:40 (2009). https://doi.org/10.1145/
1568318.1568324

30. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., et al. (eds.) Foundations of Secure Computation. pp.
165–179. Academic Press (1978), available at https://people.csail.mit.edu/rivest/
pubs.html#RAD78

31. Xilinx: UltraScale architecture DSP slice. User Guide, v1.11 (Aug 2021), https:
//docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1145/3133956.3133976
https://doi.org/10.1145/3133956.3133976
https://doi.org/10.46586/tches.v2022.i4.661-692
https://doi.org/10.46586/tches.v2022.i4.661-692
https://doi.org/10.1007/978-3-031-07689-3_1
https://doi.org/10.1007/978-3-031-07689-3_1
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.1007/978-3-031-38551-3_3
https://doi.org/10.1007/978-3-031-38551-3_3
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1142/3254
https://doi.org/10.1142/3254
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp

	Approximate CRT-Based Gadget Decomposition for Fully Homomorphic Encryption

