Published in D. Lie and V. Cortier, Eds., 32nd ACM Conference on Computer and Communications Security (ACM CCS 2025), pp. 2951-2965, ACM Press, 2025.

Fast Homomorphic Evaluation of LWR-based PRFs

Amit Deo
Zama
Paris, France

Benjamin R. Curtis
Zama
Paris, France

Abstract

Certain applications of fully homomorphic encryption (such as
transciphering, universal thresholdizers, and PIR) require random-
ness while operating over encrypted data. This randomness has
to be obliviously generated in the encrypted domain and remain
encrypted throughout the computation. Moreover, it should be guar-
anteed that independent-looking random coins can be obliviously
generated for different computations.

In this work, we consider the homomorphic evaluation of pseu-
dorandom functions (PRFs) with a focus on practical lattice-based
candidates. In the homomorphic PRF evaluation setting, given a
fully homomorphic encryption of the PRF secret key s, it should
be possible to homomorphically compute encryptions of PRF eval-
uations {PRFS(xi)}{\;Il for public inputs {x,}{\ﬁ1 We consider this
problem for PRF families based on the hardness of the Learning-
With-Rounding (LWR) problem introduced by Banerjee, Peikert,
and Rosen (EUROCRYPT 2012). We build on a random oracle variant
of a PRF construction suggested by Banerjee et al. and demonstrate
that it can be evaluated using only two sequential programmable
bootstraps in the TFHE homomorphic encryption scheme. We also
describe several modifications of this PRE—which we prove as se-
cure as the original function—that support homomorphic evalua-
tions using only one programmable bootstrap per slot.

Numerical experiments were conducted using practically rele-
vant FHE parameter sets from the TFHE-rs library. Our benchmarks
show that a throughput of about 1000 encrypted pseudorandom
bits per second (resp. 900 encrypted pseudorandom bits per second)
can be achieved on an AWS hpc7a.96xlarge machine (resp. on a
standard laptop with an Apple M2 chip), on a single thread. The
PRF evaluation keys in our experiments have sizes roughly 40%
and 60% of a bootstrapping key.
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1 Introduction

Fully homomorphic encryption (FHE) provides a method of out-
sourcing computation on sensitive data [65, 41]. In particular, a
client may encrypt data (e.g., patient medical records) using an FHE
scheme and outsource some computation/evaluation (e.g., some
diagnosis) on that data. Importantly, the server never learns the
initial data, or the result of its computation.

A recurring problem with existing FHE schemes [22, 20, 36, 44,
24, 25] is their ciphertext expansion: a ciphertext is normally at least
an order of magnitude larger than its corresponding plaintext. This
poses a significant problem when storing a large number of FHE
ciphertexts in a remote database. A solution inspired by the perfor-
mance of symmetric-key ciphers is called transciphering. The idea is
to first store symmetric-key ciphertexts in the remote database long
term. Then, whenever computation on some database element(s)
is requested, the server homomorphically evaluates the secret-key
deciphering algorithm to obtain FHE ciphertext(s) encrypting the
same database plaintext(s). To preserve privacy, the server is given
an encrypted version of the client’s symmetric key. In summary,
transciphering essentially allows a server to use an encrypted ver-
sion of the client’s symmetric key to transform a symmetric-key
ciphertext into an FHE one. As pseudorandom functions (PRFs) are
a key building block of symmetric-key cryptography, the problem
of transciphering boils down to homomorphically evaluating a PRF
as efficiently as possible.

The problem of homomorphically evaluating pseudorandom
functions also arises in the context of universal thresholdizers (UT)
[18, 2, 35], which generically provide threshold realizations of vari-
ous primitives (including public-key encryption and digital signa-
tures). In particular, UTs can be used to turn any digital signature
into a non-interactive threshold signature. The idea is to homomor-
phically execute the signing algorithm of the underlying signature
before running a threshold decryption protocol on the resulting
FHE ciphertext so as to obtain the final signature. However, if the
signature scheme is probabilistic, its signing algorithm must be


https://orcid.org/0000-0002-5192-4372
https://orcid.org/0000-0003-4433-2333
https://orcid.org/0000-0002-6914-1616
https://orcid.org/0009-0005-6377-0234
https://orcid.org/0009-0008-2278-0411
https://doi.org/10.1145/3719027.3765177
https://doi.org/10.1145/3719027.3765177

CCS 25, October 13-17, 2025, Taipei, Taiwan

de-randomized (by the standard trick of deriving its randomness
from the message using a PRF) to ensure that all parties will decrypt
the same FHE ciphertext.

Yet another application of homomorphically evaluating PRFs is
producing encrypted randomness for blockchain smart contracts.
An example of where one might require this is for simulating dice
rolls or more generally playing games with randomness on the
blockchain. In slightly more detail, a privacy-preserving blockchain
may consist of a series of FHE ciphertexts encrypted under a key
shared amongst an assigned group of validators. The task of these
validators is to decrypt particular ciphertexts in a distributed man-
ner. An example of an implementation of such a blockchain is
fhEVM [32]. During a game/smart contract execution, clients can
produce encryptions of random values by homomorphically eval-
uating a PRF. In doing so, the plaintexts remain hidden from the
client but can still be considered random by relying on the security
of the underlying PRF. These ciphertexts can then be used as dice
rolls or even fed into an encrypted shuffling algorithm in a card
game. Shuffling based on FHE-encrypted PRF outputs is also use-
ful [37] in the context of private information retrieval [27]. In more
theoretical applications, FHE-friendly PRFs/PRGs can also serve as
building blocks for circuit-size-independent non-interactive zero-
knowledge proofs [41, 42]. They can also be used [57] to decrease
the communication complexity of garbled circuit protocols.

When it comes to homomorphically computing secret-key pseu-
dorandom objects, one may end up evaluating a complex circuit,
which may be time-consuming and lead to impractical parame-
ters without resorting to bootstrapping. Indeed, all existing FHE
schemes involve ciphertexts containing a noise that grows during
homomorphic evaluations. At some point, the noise grows too large
to enable correct decryption, so FHE schemes specify a bootstrap-
ping algorithm which resets the noise to some predefined size. FHE
schemes such as FHEW/TFHE [34, 25] take bootstrapping one step
further. In particular, in their basic version, they enable the applica-
tion of a negacyclic univariate function to the plaintext during the
bootstrapping operation. The process of homomorphically evaluat-
ing a function during a bootstrapping operation is referred to as
programmable bootstrapping (PBS). Essentially, for any negacyclic!
univariate function f, applying the programmable bootstrapping
algorithm takes an encryption of m and outputs an encryption of
f(m) with a predefined noise level. Another important point is that
bootstrapping in FHEW/TFHE is very efficient in terms of latency
(i.e., takes milliseconds) compared to BFV/BGV [20, 36, 22] where
bootstrapping takes multiple seconds.

1.1 Our Contributions and Techniques

We consider the question of how efficiently we can homomorphi-
cally evaluate pseudorandom functions based on lattice assump-
tions. More specifically, we address the problem of evaluating PRFs
based on the difficulty of the Learning-With-Rounding (LWR) prob-
lem [12], which can be seen as a variant of the Learning-With-
Errors (LWE) problem where the noise is deterministically gen-
erated. For a public matrix A € Z5™ with moduli p and Q such
that p < Q and a secret vector s € Z", the LWR problem is to

'In particular, for a domain Z,, and image Z, a negacyclic function fsatisfies f(x +

Q) = —f(x) mod q.
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distinguish [(p/Q) - (A" - s mod Q)] from a uniformly random vec-
tor in ZZ‘. Here, the notation [-| denotes rounding to the nearest
integer (rounding upwards in the case of a tie). The conjectured
hardness of LWR naturally leads to a pseudorandom generator [12,
Section 1.1] which expands a seed s into a longer pseudorandom
string [(p/Q)-(A"-s mod Q)] using a public matrix A. By the GGM
construction [46], it also implies a pseudorandom function family.
Furthermore, it yields a more direct PRF construction (explicitly
described in [19] but already implicit in [12]) in the random oracle
model. Given input x and a secret key s € Z", the PRF evalua-
tion is defined to be [(p/Q) - (A(x)" - s mod Q)], where the matrix
A(x)=H(x) e Z’éxm is derived from a random oracle H.

In this paper, we show that the more efficient random-oracle-
based construction can be evaluated efficiently using a small num-
ber of sequential PBSes if we restrict the ratio Q/p to be small. We
note that the known reductions from LWE to LWR either assume
that Q/p is super-polynomial [12] or that the number m of sam-
ples given to the distinguisher is a priori bounded [7, 15]. In fact, a
certain class of reductions for Q/p = poly(A) and an unbounded
number of samples was shown to be impossible [63]. However,
even for an unbounded number of samples, LWR still appears to
be exponentially hard (as commented in [12, 16]) in the parameter
regime Q/p = Q(/n) when p | Q.

We note that our approach would also apply to evaluate the
Banerjee and Peikert PRF [11]. They generalise the key homomor-
phic PRF from [12, 19] to prove pseudorandomness in the standard
model via different encodings of the input. However, in this case
we cannot claim security under LWE, because their proof only
applies for a super-polynomial ratio Q/p and we require this ratio
to be small. Instead, we keep the random oracle version, which is
more efficient and can be proved pseudorandom under LWR in the
random oracle model.

In the following, we show that, for a polynomial ratio Q/ p, we
can evaluate the above LWR-based PRF using a small number of
sequential bootstraps. The idea is to compute an input-dependent
vector a = H(x) € Zb and view ¢ = (—a,0) € Zgrl as an LWE
ciphertext (with plaintext modulus p) that has a very large noise,
but still decrypts to [g -({(a,s) mod Q)| under the LWE secret key
s € Z". So, if we have an FHE bootstrapping key encrypting the
PRF secret key s, we can obtain a low-noise encryption of the same
value [g -({a,s) mod Q)| by bootstrapping ¢ = (—a,0) € Zgrl.

With the bootstrapping techniques of FHEW [34] and TFHE [25],
one difficulty is that we must find the appropriate negacyclic func-
tions to evaluate in order to perform this operation. A direct appli-
cation of the techniques from Liu et al. [58] to evaluate the original
PRF requires three sequential PBSes for each slot of log p pseudo-
random bits. To improve upon this baseline, we use a “Full-domain
functional bootstrapping” method from Ma et al. [60] so as to re-
duce the PBS depth (i.e., the number of sequential bootstraps per
pseudorandom plaintext slot) to 2.

Finally, we suggest a modified version of the random oracle-
based PRF of [12, 19] which supports homomorphic evaluations
in depth one and dispenses with the need to sequentially evaluate
different negacyclic functions. By “depth-one”, we mean that, if
the output space of the PRF is Z!, each slot of log p output bits
only costs one PBS to evaluate and ¢ slots can be processed in



Fast Homomorphic Evaluation of LWR-based PRFs

parallel in order to obtain a long output in Zf;. Our construction
essentially applies a PBS using a single negacyclic version of the
usual rounding function. As a result, the “ciphertext” (—a, 0) from
above gets mapped to an encryption of

(_l)msb((a,s) mod 20Q) . [5 . (<a, s) mod Q)J ) (1)

When p and Q are powers of two, we can show that the above
function is a PRF based on the pseudorandomness of LWR. The
reduction works by deriving the base-2 digits and the sign of the
modified PRF from LWR samples whose moduli are scaled up by
appropriate powers of two.

We can prove that the modified PRF is as secure as the original
one, and we give reductions for both the floor function and the
nearest integer rounding function. Note that the former achieves
slightly better parameters. Although the base 2 is appropriate for
practical implementations of TFHE, one could replace it by other
bases if required.

A point worth mentioning is that due to the structure of TFHE,
we typically end up using LWR with power-of-two moduli Q €
{29,210 21} and pefe,.., 2°} in our depth-1 construction. In par-
ticular, p is often very small which allows LWR to remain hard for
relatively small LWR dimension nyypg compared to the TFHE LWE
dimension ny yg. This can be leveraged by truncating the PBS oper-
ation; i.e., by performing nyyp blind rotation steps during the PBS
rather than the usual nyyy steps. Since blind rotation dominates
PBS latency, we may achieve a factor nyywg/npwg improvement in
terms of latency.

1.2 Related Work

The idea of using bootstrapping to obliviously generate FHE en-
cryptions of random bits was previously used in the past (see, e.g.,
[1]). In this paper, we consider a derandomized version of the pro-
cess where we prove that obliviously generated ciphertexts indeed
encrypt pseudorandom messages uniquely determined by an en-
crypted seed and public input. For this purpose, we also aim at
relying on the pseudorandomness of a well-studied PRF family.
Homomorphic evaluation of PRFs/ciphers using FHE has re-
ceived a lot of attention in the research literature. With transci-
phering in mind, a natural task was to optimize the evaluation
of AES [43]. Until recently, the efficiency of this approach was
questionable. However, recent works managed to evaluate a single
block of AES around 30 seconds [66] and 9 seconds [67] using 16-
threaded implementations. Another line of research is the develop-
ment of FHE-friendly cipher/PRF constructions such as LowMC [6],
PASTA [33], FASTA [28], FLIP [62], FiLIP [61], Elisabeth [29], Ru-
bato [48], Chaghri [8], and Transistor [13]. Unfortunately, the secu-
rity level of such schemes is not well understood and attacks are still
being discovered [47, 56, 45]. In an attempt to avoid this problem,
the standardized cipher Trivium [50] and the subsequent cipher
Kreyvium [23] have been investigated as good options for efficient
transciphering [10]. The homomorphic evaluation of Trivium and
other symmetric primitives (including SIMON, AES, and Keccack)
was also considered via a framework [17] allowing to evaluate more
complex Boolean functions. However, even Trivium and Kreyvium
have recently been subjected to improved attacks [49]. For the sake
of not putting all one’s eggs in the same basket, it is desirable to
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have alternative solutions based on more stable algorithmic as-
sumptions, in particular if they enable higher throughputs than the
homomorphic evaluation of stream ciphers. This motivates us to
consider LWR-based PRFs and exploit the fact that their structure
blends quite well with the bootstrapping paradigm of FHEW/TFHE.

In a direction somewhat analogous to ours, a recent work shows
how to homomorphically evaluate an adaptation of the LWR PRF
using the BGV/BFV scheme [37]. In particular, this work tweaks the
LWR-based PRF in a way that replaces the exact rounding function
with an alternative based on the Legendre symbol. The advantage of
this is that the resulting PRF is homomorphically computable using
a reasonably small number of leveled multiplications (concretely
= 20). It should be noted that these leveled multiplications lead
to an output ciphertext with a noise larger than that of a freshly
bootstrapped ciphertext which may need to be considered in certain
applications. Moreover, their modified rounding function makes
the resulting PRF significantly deviate from the well-known con-
struction and introduces a novel variant of the LWR assumption.
As of today, this assumption does not appear to be implied by the
original assumption and has not undergone much cryptanalytic
effort. In contrast, we rely on an LWR assumption that has been
standing for over a decade. A related work that homomorphically
evaluates the random-oracle variant of the standard LWR-based
PRF is [31]. The FHE scheme used is BGV and the implementation
uses a “A o 1” [30] backend. The main strength of this line of work
lies in the simplicity from a programmer perspective. In particular,
an un-batched homomorphic PRF evaluation can be implemented
in just a few dozen lines. The implementation produces a reported
64 encrypted bits at a latency of around 10 seconds.? However, it is
worth noting that the experiments are run on a less powerful ma-
chine than ours and the authors mention that further optimization
should be possible.

Our approach has a common feature with the HERMES transci-
phering technique [9] in that the latter also allows switching from a
lattice-based symmetric cipher (with the difference that they use an
LWE-based one while we rely on LWR) to CKKS/BGV/BFV (instead
of TFHE in our case) without relying on any ad-hoc assumption.
Yet, their 1.58 expansion factor (i.e., the ratio between the size of
the ciphertext stored on a server and the plaintext size) is larger
than ours. Moreover, they achieve a latency of around 26 seconds
before any output is computed with around 60, 000 bits per second
of amortized throughput. To achieve these numbers, 5.31MB of ad-
ditional key material is used (which is just 1% of the corresponding
bootstrapping key size).

Brakerski et al. [21] took a different (non-transciphering-based)
approach allowing to reduce the expansion rate of FHE schemes
by constructing a ciphertext compression mechanism leading to
rate-(1 — o(1)) FHE. Their technique applies to packed LWE ci-
phertexts sharing a common header (typically, a vector over ZZ)
where £ message-carrying slots encrypt £ distinct binary plaintexts
under distinct LWE secrets. It shrinks each of these € slots down to
a single bit, thus replacing a vector in Zg by a binary string {0, 1}%.

For £ = Q(A?) = poly(A) plaintexts, the achieved rate (i.e. plaintext
size divided by ciphertext size) is 1 — ((1/4) when expanding the

?Results were recorded on a 2015 iMac with a 4 GHz Core i7 and 16GB RAM.
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ciphertext header from a seed. In other words, the size of a com-
pressed output ciphertext on € plaintext inputs approaches the size
of around ¢ plaintexts as £ grows to infinity. However, subsequent
FHE evaluations cannot be done on compressed ciphertexts and
require bootstrapping to “undo” the compression. Applying this
method to plain TFHE thus requires £ = poly(A) bootstrapping
keys (one for each of the original ¢ distinct keys). This overhead
may be avoided by introducing a ring structure to TFHE as in [52]
with a larger than usual ring dimension ¢ to achieve reasonable
expansion factor. However, the sub-optimal granularity (i.e., the
fact that a block of £ = poly(A) ciphertexts is required before a
compression operation can begin) remains. Note that one may also
apply the compression to BGV/BFV.

Outline of the paper. The rest of this paper is organized as follows.
We begin with background and definitions in Section 2. Next, in
Section 3, we discuss the homomorphic evaluation of the standard
LWR function in depth 2. Then, in Section 4 we briefly discuss ring-
LWR-based PRFs in the context of BFV. In Section 5, we present
the depth-1 evaluation of our modified LWR-based PRF and prove
it as secure as the original one. Further variants are also discussed.
This is followed by an implementation of a depth-1 construction
using the TFHE-rs library in Section 6.

In the supplementary material, we recall the standard definition
of pseudorandom functions and the description of GGSW cipher-
texts. We also present a concrete instantiation of the transciphering
application.

2 Background and Definitions

Notation. In the following, when D is a distribution, x ~ D
means that x is a random variable distributed according to D. The
notation x «> D denotes the explicit action of sampling an element
x according to the distribution D. For a finite set 8, U(S) stands for
the uniform distribution over &. For any integer ¢ > 2, Z, denotes
the ring of integers with addition and multiplication modulo q. For
any real number y, we use [y] to denote rounding y to the nearest
integer (rounding upwards in the case of a tie), | y| to denote the
floor function and [y] to denote the ceiling function. If yis replaced
by a vector y, we apply the rounding, floor and ceiling functions
entry-wise. Logarithms will always have a base of 2. For x € Z,,
msb(x) denotes the most significant bit of the length-[log ¢| binary
representation of x interpreted as an integer in {0, ...,q — 1}.

2.1 Cryptographic Assumptions

LWE/LWR Assumptions. We first recall the Learning-With-Errors
(LWE) assumption defined by Regev [64].

Definition 2.1 (LWE assumption). Let integersm>n>1,q>2
and let y;, y, be distributions over Z. The LWE, , ., . problem
consists in distinguishing between the distributions

{(AT,ATs+e) | A~U(ZF™), s < xi, e ~ 1"}
and U(Z;”X" x Z;")

When the distribution of s is the uniform distribution U(Zg),
the assumption is sometimes denoted by LWE, ,, ;- .
We now recall the Learning-With-Rounding (LWR) problem [12].
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Definition 2.2 (LWR assumption). Let integersm >n > 1,q >
p = 2 and let y, be a distribution over Z. The Learning-With-
Rounding (LWRy, ;4 ) problem consists in distinguishing be-
tween the distributions

{(A".[(p/q)- (A" s mod )] mod p) | A ~U(ZF™), s < xI'}
and U(ZZ’X” X ZZ’)

When the number m of samples is a priori bounded, the LWE as-
sumption is known [7, 15] to imply the hardness of LWR for a poly-
nomial ratio g/ p = poly(4). When there is no pre-determined up-
per bound on the number of samples, the only known reduction [12,
Theorem 3.2] from LWE to LWR requires a super-polynomial ratio
q/p = QA“(D). However, it is quite plausible that LWR remains
hard for q/p = poly(A) even for an a priori unbounded number
of samples. As discussed in [12, 16], as long as q/p = Q(/n) and
q/p is an integer (so that [(p/q) - U(Zq)J = U(Zp)), LWR may
be exponentially hard even for quantum algorithms. We also note
that replacing the rounding function |-] by the floor function is not
believed to affect the hardness of the LWR problem [12, Sect. 2].
When evaluating the concrete security of our LWR-based parame-
ter sets, we consider the approach from [3], which models an LWR
sample (a,b := [g(a, s)|) € Z§ x Z,, as an LWE sample via as-
suming that % -b = (a,s) + e. This LWE sample is then assumed

s zip} We note that
this is a standard approach for evaluating the concrete security of
LWR-based parameter sets and is supported in theory. Specifically,
for g divisible by p, [15, Theorem 5] shows a reduction from LWE
with uniform errors (in effectively the same interval as above) to

LWR for any secret distribution.

to have uniform noise over the set {_qu +1,...

Ring-LWE/LWR Assumptions. We now recall the definition of
the ring Learning-With-Errors problem [59].

Definition 2.3 (RLWE assumption). Take an integer q > 2. Let
®(X) be a cyclotomic polynomial of degree N and let the rings R =
7| X]/(®(X)) and Ry = R/qR. Let x, x, be distributions over .
The Ring LWE (RLWE , ¢ 1) problem consists in distinguishing
between the distributions

f(a,e-3+¢)|a~ URY), 3 € X €~ X
and U(ﬂ?;” X W;")

The LWR problem has a natural analogue in the ring setting. The
Ring Learning-With-Rounding (RLWR) problem [12] is defined as
follows.

Definition 2.4 (RLWR assumption). Let integers q > p > 2. Let
®(X) be a cyclotomic polynomial of degree N and let the rings
R =7[X]/(®(X)) and Rq= R/qR. Let y, be a distribution over
. The Ring Learning-With-Rounding (RLWRy 4 5 ) problem
consists in distinguishing between the distributions

{(e. [(p/9)- (@3 mod q)| mod p) | & ~ U(RE), » < Xs}
and U(ﬂ?f]” X ﬂz’)

We finally recall the definition of the Generalized Learning-With-
Errors (GLWE) problem (also known as the Module-Learning-With-

Errors problem) studied in [54] that is useful when discussing the
FHEW/TFHE [34, 25] FHE schemes.
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Definition 2.5 (GLWE assumption). Take an integer ¢ > 2 and
arank k > 1. Let ®(X) be a cyclotomic polynomial of degree N
and take the rings ® = Z[X]/(®(X)) and Ry = R/qR. Let x;, xe
be distributions over K. The Generalized LWE (GLWE Nomg,xoxe)
problem consists in distinguishing between the distributions

{(ATAT 5+ ) [A~URE™), 5 < xk o~y
and U(RI x &m).

2.2 (Key-Homomorphic) Pseudorandom
Functions Based on LWR

In [12] (see also [16]), Banerjee, Peikert, and Rosen implicitly de-
scribe a weak pseudorandom function based on the hardness of
the LWR problem. This weak PRF maps a uniformly random input
ac Zb to the output wPRF,(a) = [(p/Q) - ({a, s) mod Q)] mod p,
where s € Z" is the secret key.

By introducing a random oracle H: {0,1}* — ZB, this weak PRF
can be turned into a full PRF by computing @ = H(x) € Z{, when

the PRF is to be evaluated on arbitrary input x € {0, 1}*. As pointed
out in [19], this PRF turns out to be almost key-homomorphic PRF.
An explicit security proof was given in [40, Theorem 3.1]. It is
precisely defined as follows.

The secret key is a vector s = (sq,...,$,) ~ x& where each s; is
sampled from a distribution ; specified by public parameters. These
public parameters also contain the description of a hash function
H : {0,1}* > Z% (modeled as a random oracle) and two moduli p
and Q where p divides Q. Typically, y; is the uniform distribution
over Z. Alternatively, x; can be a discrete Gaussian distribution
with a suitable standard deviation o or even the uniform binary
distribution. We note that in any of these cases, the parameters
(n, q, p) can be chosen carefully to protect against all known attacks.

A function evaluation is then defined as

x > PRE() 2 [ £+ ((H(x), ) mod Q) [ mod p (@)

and outputs a scalar in Z,. If we need to output ¢ pseudorandom
elements in Z,, we can extend it as x > PRF (x) = (y1,.... ),
where

Y= [5 - ((H(x,1), s) mod Q)J mod p

When proving the pseudorandomness of the function (2) (in the
random oracle model), the reduction (see [12] or [40, Theorem 3.1])
is given from an instance of LWR where the number of samples
is not a priori bounded since each queried input x is mapped to
a different sample (i.e., the number of samples is as large as the
number of evaluation queries).

Therefore we need to choose a super-polynomial Q/p = 2900 if
we want to rely on known LWE-to-LWR reductions [12]. Alterna-
tively, one may prefer a more efficient choice of parameters with
Q/p = poly(A) and rely on the plausible hardness of LWR in this
parameter regime.? In this case, it is recommended in [12] to set
Q/p as an integer larger than Q(y/n) if n is the dimension of s.

In [12, 16], LWR was conjectured to be exponentially hard when
Q/p = Q(Jn) and assuming uniform secret keys (i.e., x, = U(Zp)).

vie{l,..,t}.

3We note that, in the statement of [40, Theorem 3.1], the hypothesis Q/p = QM) is
only needed if a reduction from LWE is desired via the LWE-to-LWR reduction of [12].
The proof still works under the LWR assumption when Q/p is polynomial.
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In order to homomorphically evaluate the PRF using programmable
bootstrapping, it is more convenient to sample the seed s from a
binary or ternary distribution. In practice, we use the lattice estima-
tor* [5] to derive secure parameters. Although the lattice estimator
is designed for LWE, we deploy the usual heuristic method of ap-
proximating the hardness of LWR by that of LWE with uniform
noise in the interval [_TQp +1, 2%] . Fortunately, even for the uni-
form binary distribution y, = U({0, 1}), we can find 128-bit secure
parameters for the range of moduli Q and p that our constructions
require.

2.3 TFHE Bootstrapping

An LWE ciphertext encrypting a message m € Z,, with respect to
secret key s takes the form (a,b) = (a,{(a,s)+e+m[q/p]) € Zg“.
Here, a is sampled uniformly and e is sampled from an error distri-
bution y,. As in [58], when (a, b) is an LWE ciphertext with secret
key s, we denote by Decg(a,b) = b — (a,s) mod q the decoding
function (a.k.a. phase function) which outputs a noisy encoding
e+ m[q/p] of the plaintext m. We can similarly define GLWE ci-
phertexts by taking « € Rk s e .735, error ¢ € R and message
me R,

Programmable Bootstrapping Subroutines. We rely on the follow-
ing theorem, which is quoted from [58] but is implied by earlier
results on the programmable bootstrapping of LWE ciphertexts for
negacyclic functions. Note that in this theorem and throughout this
paper, q is used to denote the TFHE modulus and Q will denote a
smaller modulus dividing q. We will assume that Q = 2N where N
is the degree of the TFHE cyclotomic ring.

THEOREM 2.6 ([58, THEOREM 1]). Take positive integers n, q and
Q such that Q divides q and q is set to a power of 2. There is a boot-
strapping procedure Boot with the following property: For any LWE
ciphertext (a,b) € Zg’l and any function f: Zgy — Z, such that
f(x+0Q/2) = —f(x) mod g, the procedure Boot[ f1(a,b) outputs a
ciphertext (¢,d) € ZZH such that

Decg(c,d) = f(Decg(a,b)) +e (mod q),

where |e| < B, for a noise bound f§ that only depends on the operations
performed by Boot and not on the input ciphertext (a, b).

There are three subroutines in TFHE bootstrapping: blind rota-
tion, sample extraction, and key-switching. In what follows, we
set Q = 2N in the above theorem. The blind rotation in TFHE
takes as input an LWE ciphertext (a,b) € ZJ#! under secret key
s € {0, 1}" that “encrypts” a message fi € Z,y and a test polyno-
mial v(X) whose coefficients encode the outputs of a negacyclic
function fin a lookup table. It returns a GLWE ciphertext ¢’ €

(Zq[X 1/(xXN + 1))k+1, under secret key with bounded coefficients

3" € Rk, which encrypts the polynomial X ?+(@s) mod 2N, (x)

whose degree-0 coefficient is f(Decg(a, b)) when fis negacyclic.
This blind rotation operation requires a bootstrapping key in the
form of generalized GSW (or GGSW) encryptions [44, 34] of the
entries of s. For completeness, we overview GGSW in Supplemen-
tary Material B. The resulting GLWE ciphertext is then sample-
extracted to obtain an LWE ciphertext encrypting the degree-0

“https://github.com/malb/lattice-estimator
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coefficient of X ~b+(@s) mod 2N .4, (X) The resulting LWE cipher-
text (¢’,d’) € Z](;N *+1 js encrypted under the secret key s’ € Z];N
consisting of the coefficients of 3”. A final key switch leads to an
LWE ciphertext (c,d) € ZZH under the original secret key s. To
sum up, we have:

(¢,d) « KeySwitch e SampleExtract o BlindRotate(a, b)
—_—

=GLWE,, (X~ Pecs(ab).4 (X))

=LWE (f(Dec (a.b)))

=LWE(f(Dec,(a,b)))

provided that test polynomial v(X) = Zfigl v; X' is programmed
asv; = f(i) € Z, for some negacyclic function f: Z,N — Z,. For
amore detailed exposition, see [51]. Note that in order to get the out-
put (¢,d) € ZZH back into the domain of Boot, one can simply ap-
ply the mod-switching operation given by ModSwitch,_,,n(c, d) =
([(ZN/q) -¢c|,[(2N/q)- dJ) This is useful when a sequence of mul-
tiple PBSes for negacyclic functions with different domains and
ranges is required.

3 Homomorphic Evaluation of LWR-based PRF
in Depth 2
We now describe the homomorphic evaluation of the standard LWR-
based PRF in depth 2. Note that this construction is not as efficient
as the depth-1 construction in Section 5 and may be skipped by the
reader. Nonetheless, this section describes what can be achieved
using known techniques and paves the way for the homomorphic
BFV evaluation of the RLWR-based PRF discussed in Section 4. In
this section, we set Q = 2N and A = Q/p where p is a plaintext
modulus dividing 2N. Furthermore, the TFHE modulus ¢ > 2N is
also assumed to be divisible by 2N (which is the case in practice).
In order to homomorphically evaluate the PRF in (2) for a public
input x given an encryption of the seed s € Z", the idea is to first
compute an input-dependent a = H(x) € Zb and view (—a, 0) as
an LWE ciphertext with a very large noise. Namely, assuming that
A | Q, if we write

(-a,0) = (—a, —({a,s) mod Q)
+A-[(a,s) mod Q)/A| + ({a,s) mod 7)),
e[-A/2,A/2)

we can view the term ({a, s) mod A) as a noise to clean up using
bootstrapping. Using FHEW/TFHE-like schemes, the main difficulty
is to do this using negacyclic functions.

A first solution is to use a technique proposed by Liu et al. [58,
Section 4] which applies Theorem 2.6 to negacyclic functions. This
method is based on the homomorphic floor function evaluation
technique [58, Algorithm 2] that allows handling an arbitrarily large
noise in the input ciphertext. For each slot of pseudorandomness,
the resulting homomorphic evaluation algorithm requires three
sequential PBSes.

To obtain better efficiency, we can actually use a technique from
[60, Algorithm 1] so as to only call Boot twice for each plaintext slot.
To do this, we use the negacyclic functions fe, foval © Zg = Zg
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defined as

J+1)m0dQ ifxe[o,%—l]

%J—p+l)mon ifxe[%,Q—l]
A([ZKJ mOdP) ifxe[o,%_l]

Jeval(x) = A-([Z(QA_X)J+§ modp) ifxe [?,Q—l]
_feval(x_%) mod Q ifxe[Q 30 _ ]

4> 4
where A = Q/p and the input x € Zg is seen as a positive integer
in{0,...,Q — 1}. We note that f. is negacyclic since, for each x €

[Q/2>Q_1]’
febx=0/2= §- (2 (<= )] +1)
= 5 (2B -xl-p+1) = £l -

The negacyclic property of f.,, can also be checked in a similar
way (with additional cases to consider):

Oy 1O

- ngal(((x :r Q//zz)— 9) (mod)Q) ifxef0,4-1
A (RS | 4 Pned p)  ifxe[9.9-1]
feval(x+Q/2)— A'E[Z(H—AQ/Z)JHIOdP) ifxe[%,%—l]
~foat(x+0/2) = 9) (mod Q) ifx € [32,0-1]
—feval(x)  (mod Q) lfxE[O,%—l
A (12520 + fmed p) ifxe[§.§ 1]
A- [%Jmodp) ifx e[, 1]
~fovat(x)  (mod Q) ifxe [ 0-1]

= _feval(x) (mod Q) .

Again, we assume that Q and p are both powers of 2. In the
description hereunder, we also assume that the seed s € Z" of the
LWR-based PRF is encrypted in the same way as the bootstrapping
key of an TFHE encryption scheme for LWE secret key s. We thus
assume a bootstrapping key bsk[j] = GGSW,.(5;), 1 < j < n
consisting of GGSW encryptions [44, 34] of the bits of seed s under
a GGSW secret key 4”. Although we are viewing s as a TFHE LWE
key for intuition here, the PRF seed should be distinct from all TFHE
keys in any practical application to respect key separation. The
evaluation algorithm then goes as follows. Here, as in [60, Section
3], the inner product {a, s) mod Q is interpreted as an unsigned
element of {0,...,Q — 1} (rather than {—Q/2,...,Q0/2 — 1}) and pis
viewed as an element of {0, ..., p — 1}.

Eval,,(bsk, x) : Given public parameters pp = (n,Q, p, f), an
evaluation key bsk and an input x € {0, 1}{, compute the
input-dependent vector a = H(x) € Z{, and do the follow-
ing:

1. (¢,d) :=Boot[ fr](—a, 2) (mod Q)

2. (d,b) = Boot[ fuy](c,d) (m_od Q)
Output the ciphertext ct = (@,b) € Zgﬂ.

The above homomorphic evaluation algorithm outputs an LWE
encryption of PRF (x) = [6 -({a, s) mod Q)| mod p (interpreted
as an element of [0, p — 1]) under an LWE secret key which is the
PREF seed s itself. In order to obtain an LWE encryption of PRF(x)
under the LWE secret key s”, we can remove the key-switching step
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in the second call to Boot. We further note that the final modulus
switch may be removed.

The proof of the following lemma is adapted from [60, Lemma 3.1],
with all details written out.

LEmMA 3.1. Assume that p and Q are both powers of 2 and that
A =Q/p > 4P, where B is the bootstrapping error from Theorem 2.6.
For any x € {0, 1}, Eval outputs a ciphertext (d,b) € Zgrl such that

Decy(d,b) = A~y + e (mod Q), where|e| < j,

u= [5 -({a,s) mod Q)J mod p 3)
witha = H(x) € Zg.

Proor. We first note that

(-a,0) = (—a,—((a,s) mod Q) + A - [({a, s) mod Q)/A|
+ ((a,s) mod A)) € Zgrl
cl-A/2.A/2)
where A = Q/p and ({(a, s) mod Q) € {0,...,Q — 1}. Then, before
Line 1, we have
Decy(—a,0) = (a,s) mod Q
=A- [((a, s) mod Q)/A| +({a,s) mod A) (mod Q),

R ———

a

2p
where p1 € {0, ..., p — 1},> and we can interpret ({a, s) mod A) as a
very large noise. Initially, we have

Decy(—a, %) =A-p+((a,s) mod A) + %) (mod Q) (4)

A

é
where é € [0, A). Then, we distinguish two cases.
Casel: A-p+¢ée€[0,0/2—-1]
We have

fo(A-p+e)= % : (2[%J + 1) mod Q
= % -2+ 1)mod Q .

After Line 1, we obtain

Decg(e,d) = fo(Decy(—d, %)) +eg
EfC(A-,u+é)+eﬂ: % ~(2,u+l)+eﬂ (mod Q)
for some ep € (=P, B). Moreover, we know that
fed-pro 3.5 -4]
because fo(x) € [0,Q/4—A/4] forany x € [0,Q/2—1] and

we cannot have % -u+1)ef0,A/4) forpef{0,...,p—1}.
Since |eg| < f < A/4, this implies

Decg(c,d) mod Q = % SQu+ 1)+ e € [0,0/4—1] .
By the definition of f,,,, this in turn yields
feval(Decs(c, d) mod Q) =A- [% . (% -Qu+ 1)+ eﬁ)J

=8-|(u+ 3+ 3 eyl
=A-p (modQ)

°Recall that, in this section, elements of Z, are viewed as unsigned integers with a
representative in [0,Q — 1].
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since |% -eﬁ| < (2/N)-(A/4) = 1/2. By Theorem 2.6, after
Line 2, we obtain

Decy(d, b) = feval(Decs(c, d)) + e‘é =A-p+ e‘é

for some ek e (-4,p).
Casell: A-u+ee[Q/2,0—1]
We have

fC(A~y+é):—é'(2[A'i+éJ—p+l) mod Q
-(2u—p+1)modQ
-u+%—%mon

1
_A
4
=_A
)

so that, after Line 1,

Decg(c,d) = fo(A-p+@) +eg

=3 p+9-%+e (modQ) )

for some eg € (—p, B).

Also, for any x € [Q/2,0 — 1], we have f~(x) € [(30 +
N)/4,0 — %] so that fe(x) + e € [3Q/4,Q — 1] whenever
ep € (—A/4,A/4) and the rightmost side of (5) thus lives in

[30/4.0 - 1].
Since fC(A~y+é)=—%-u+%—% (mod Q), we have (over
Q
2Q-fed-prd—e)=%-(5-u+t R +h-e+k-Q)
=p+F+i- Foeg +2k-p
€-3.3)

for some integer k € Z. By rounding, it comes that

|2-(Q— fea-p+&)—eg)| = p+F +2k-p

(still over Q) and
[%-(Q—fC(A-,u+é)—eﬁ)J+§ =p+2k+1)-p
=p (mod p) .
Given that Decg(c,d) mod Q € [3Q0/4,0Q — 1] after Line 1,
we have

Jeval( Decg(e,d) mod Q) = fuval (fo(A - 11+ &) + eg)
:A-([%-(Q—fC(A-y+é)—eﬁ)J+ g modp) mod Q
=A-pmodQ .

Therefore, after Line 2, we get
Decy(d,b) = fuya(Decy(c,d)) +ep=A-p+ ei;

for some e‘é € (=B, p), as claimed.
g

We need to assume that Q = 2N, where N is the ring dimension
(i-e., the degree of the cyclotomic polynomial XN + 1 used in the
GGSW scheme encrypting the PRF seed s), in order to evaluate the
negacyclic functions using look-up tables of reasonable size. As
an example, suppose that Q = 2x2048, p = 2% andn = 761 with a bi-
nary secret key (which is the case for the PARAM_MESSAGE__2_CARRY_2
parameters from TFHE-rs). In this case, the lattice estimator sug-
gests around 200 bits of security for the LWR,, , 5N, 17({0,1) for
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unbounded number of samples m, meaning that the LWR problem
of interest is concretely hard.

Remark 3.2. We note that Theorem 2.6 applies to the bootstrap-
ping algorithm of [55], which does not require secret keys to be
small. This allows homomorphically evaluating the PRF described
in (2) when its secret key is sampled from a wide discrete Gaussian
distribution (rather than a uniform binary/ternary distribution).
The methodology is the same as above.

4 Extension to RLWR-based PRFs Using BFV

The approach of Section 3 extends to homomorphically evaluate
the ring analogue of the PRF recalled in Section 2.2. We assume a
random oracle H: {0,1}f — R4 that ranges over the ring . Note
that this section offers an alternative view of the homomorphic
PRF evaluation in [31]. The difference in interpretation is that we
bootstrap (—«,0) directly, interpreting it as a noisy ciphertext
whereas [31] scalar multiply an encryption of the seed 3 by « and
then homomorphically round the result.

Recall that, in the notations of Theorem 2.3, the BFV FHE [36]
involves ciphertexts of the form (w, ¢ -3 + A - m + noise), where
o ~ U(R,) is a random ring element and 3 ~ y; is the secret key
sampled from some distribution over R. The standard bootstrapping
of BFV can be seen as a restricted programmable bootstrapping
for the function f(x) = A - [x/A] that only refreshes the input
ciphertext. We can use the random oracle to encode the input x as
aring element o = H(x) € X, and interpret (—a,0) € .733 asa
noisy BFV ciphertext of the form

(—@,0)2(—@,—@-3+A-Q+ ” )E?@é,
€ [-AJ2,0/2)

where O is the quotient obtained by Euclidean division and + is
the remainder. By applying non-programmable bootstrapping tech-
niques for BFV, we can homomorphically compute a low-noise
encryption (¢,d) € ﬁczl of the same plaintext Q. Note that in order
to enable the BFV bootstrapping of the high noise ciphertext, one
should set g to be the intermediate modulus to avoid the modulus
switching step [39]. Then, we obtain that

0=[((p/q) < ->modq)|=[(p/q) (a5 modq)| mod p,

so that the bootstrapping algorithm outputs a BFV encryption
(¢, d) of the RLWR-based PRF [(p/q) - (¢ -2 mod q)|.

Using the bootstrapping techniques of BFV, we can thus obtain
many pseudorandom slots in one bootstrap achieving very high
amortized throughput. On the downside, BFV bootstrapping incurs
a much higher latency (typically at least in the 10’s of seconds)
than TFHE. This latency may be prohibitive in applications such as
transciphering.

5 Modified PRFs Supporting Homomorphic
Evaluation Using Depth-1 Bootstrapping

In Section 3, the TFHE evaluator has to perform two sequential
programmable bootstraps for each plaintext slot in order to evaluate
non-negacyclic functions.

In this section, we modify the LWR-based PRF in such a way that
it can be evaluated using only one PBS per plaintext slot, approxi-
mately halving the computation time. In this modified construction,
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we assume again that Q = 2N where N is the ring dimension used
in TFHE.

We start from the previous approach and view (—a,0) € Zg;(]l as
a highly noisy ciphertext that “decrypts” to | ({(a, s) mod 2N)/A |
for A = 2N /p (in this case, we view the noise as a positive integer
in [0, A) and use the floor function). In an attempt to achieve this
decryption functionality, we apply Theorem 2.6 with the negacyclic
function f: Z,y — Z, defined by:

A’-[%-xjmodq if xe[0,N—1]
_A’.[%-(x—N)Jmodq if x € [N,2N — 1]
= (—1)m5b(x) A [% - (x mod N)J

where A’ = q/2N € Z. By Theorem 2.6, the Eval,, evaluation
algorithm outputs a ciphertext encrypting

PRF (x) = (—1)’“5"((“’s> mod 2N) l% ((a, s) mod N)J mod p (7)

fx) = (6)

where a = a(x) = H(x) € (Z,N)" and s € {0, 1}" is the LWE secret
key. Note that we hash x onto Z, 5 even though the inner product
inside the rounding function is reduced modulo N. Another differ-
ence with the original construction is that the underlying rounding
function is the floor function |-| (whereas the initial PRF can use any
rounding function like floor, ceiling or the nearest integer although
its depth-2 evaluation works for the [-] rounding function). We note
that this rounding function was used recently in [40] for similarly
small moduli, and that there is no reason to suspect that the use of
|-] affects hardness [12, Sect. 2]. We later show that one can use the
nearest integer rounding function if desired. Although the function
(7) is not the standard PRF considered in [19, 40], we can still prove
it pseudorandom via a reduction from the pseudorandomness of
the standard LWR-based PRF.

In more detail, the Eval , algorithm takes as input the boot-
strapping keys bsk[j] = GGSW,(s)), 1 < j < n, each of which
is a GGSW encryption (with ring dimension N) of the seed en-
try s; under GLWE secret key 3’. We form the test polynomial

v(X) = Zfigl v X e ZP[X]/(XN+ 1) with coefficients defined
asv; = |i- p/N| mod pfor eachi € [0, N — 1]. Let a = (ay, ..., a).
Then, due to the congruence XN = —1 (mod XN + 1), we have

X~ Z;l:l spa;  (mod 2N) co(X) = (_Dmsb((a,s) mod 2N) .

x~(as)med N) . (X)) (mod XN+1) (8)

since

(a,s) mod 2N = ({a,s) mod N) +b- N,
where b = msb({a,s) mod 2N) € {0, 1}. In the right-hand-side
member of (8), the degree-0 coefficient is thus

(_l)msb((a,s> mod 2N) . Vias) mod N

= (—l)me«“’s> mod 2N) | [((a, s) mod N) - p/NJ mod p

which is the correct evaluation for @ = H(x) € Z%,; in (7). Note
that the blind rotation and sample extraction subroutines on the
ciphertext (—a, 0) exactly run this procedure in the encrypted do-
main. In particular, the phase of (—a, 0) (i.e., (a, s) mod 2N) picks
out the correct coefficient of the test polynomial. To summarize,
we have:
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Eval,,(bsk, x) : Given public parameters pp = (n,N, p,q, ),
an evaluation key bsk and an input x € {0, 1}, compute
the input-dependent vector @ = H(x) € Z7,; and output
SampleExtract o BlindRotate[ f](—a, 0) i.e., Boot[ f] without
the keyswitch.

Note that removing the keyswitch outputs an LWE ciphertext of
the PRF encrypted under the LWE secret key s’ consisting of the
coefficients in 3”. One can then keyswitch this ciphertext to the
TFHE secret key in the wider application if required.

Remark 5.1. Although we have presented the case where the
PRF key has the same form as the LWE secret key used in TFHE,
other alternatives are available. Since the modified LWR PREF is as
secure as an LWR PREF, the required LWR dimension n g can be
smaller than the LWE dimension n used in TFHE. This allows us
to use a bsk[j] for 1 < j < nywpr in our construction which can
significantly increase efficiency as fewer blind rotation steps are
carried out. Furthermore, since we do not perform any modulus
switch from g to 2N unlike in TFHE, there is a possibility to reduce
N while increasing the module rank for efficiency. When doing this,
the hardness of the corresponding LWR problem must be checked
since a smaller N induces a smaller deterministically generated
LWR noise (of magnitude < N/p). Note that it would be useful in
terms of memory requirement to reuse the TFHE bootstrapping
key for PRF evaluation, i.e. to set the PRF seed to be the TFHE LWE
key, but this would violate the principle of key separation.

5.1 Pseudorandomness of the Modified PRF

We have shown that one can evaluate the function
PRF(x) 2 (—1)msb((as) mod 2N) l% -({a,s) mod N)J (mod p)

with depth-1 programmable bootstrapping. However, we must also
show that PRF; is indeed pseudorandom as it is a modified version
of the standard LWR PRF described in Section 2.2. As a standard
TFHE parameter choice, we assume that N = 2/ and p = 2%
where k = 5y —¢, > 0.

Consider any y € Z bounded in absolute value by 2N - B for
appropriately large B. It is easy to see that y mod 2N is simply the
lowest £y + 1 bits of y + 2N B. Further, y mod N is the lowest £
bits of y + 2N B. We can additionally interpret the operation on y
described by

lg—f] - (y mod ZN)J mod 2p 9)
in terms of operations on bits too. In particular, one can think of the
above operation as taking the {5+ 1 bottom bits of y+2N B and then
dropping the k least significant bits. This leaves {;y+1—k = ¢, +1
bits which represents an integer modulo 2p. This interpretation
implies:

OBSERVATION 5.2. For N > p both powers-of-two and any y € Z,
msb(y mod 2N) = msb([% -(ymod 2N) | mod Zp) .

Changing (2N, 2p) to (N, p) in Eq. (9) changes the operation to
“take £ bottom bits of y + 2N B and then drop the k least significant
bits”. Therefore, we have the following:

OBSERVATION 5.3. For N > p both powers-of-two and any y € Z,
one can compute [%(y mod N)J mod p from the bits of the quantity
in (9) by simply dropping the most significant bit.
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With these two observations, we prove that the modified PRF;
is as secure as a standard LWR-based PRF (denoted as G;), which is
identical to the one recalled in Section 2.2 except that the rounding
function [-] is replaced by |-].

LEMMA 5.4. Assume p = 2% and N = 2!V are powers-of-two such
thatk = {5y — ¢, > 0 and let § be a distribution with support on
Z". Take a random function H: {0, 1} — (Z,n)" and assume that
Gs: {0,1}" > Z,),

Gy(x) = [;{; - ({H(x), s) mod 2N)J mod 2p

is a pseudorandom function for seedss ~ §. Then, the function PRF :
{0,1}" > Z,,

PRF(x) = (—1)m5b(<H(X),S) mod 2N)

. l% - ((H(x),s) mod N)J mod p
is also a pseudorandom function for seedss ~ §.

Proor. We describe a reduction A that attempts to build a PPT
PRF distinguisher for G from any PPT distinguisher 2D for PRF. The
reduction is as follows:

« When D wishes to query its oracle on input x, A forwards
the request on to its challenger, receiving g € Zy,, in re-
sponse.

« Define g, = msb(g) and g’ to be the integer in {0,..., p — 1}
resulting from dropping the MSB of g. A sends f = (—1)80 -
g’ mod pback to D in response to the query x.

+ A ultimately outputs whatever D does.

When A’s challenger is returning uniform values for g, A’s re-
sponse fthat is sent to 2 is clearly uniform. On the other hand,
when A’s challenger is using G to compute g, we can use Theo-
rem 5.2 to show that the exponent of (—1) is correct and Theorem 5.3
to show that the remaining term (i.e., g’) is correctly computed for
PRF;. Therefore, A perfectly simulates 2’s PRF challenger which
implies that 2’s advantage against the pseudorandomness of PRF
is equal to that of .A’s advantage against G;. By assumption on the
pseudorandomness of G;, PRF must also be pseudorandom. [

5.2 Replacing Floor with Nearest Integer
Rounding

It is of course possible to evaluate the modified PRF in depth one
when the rounding function is [-] instead of |-]. This only requires
to modify the coefficients of the test polynomial v(X) accordingly.
In the interpretation of (—a,0) as a noisy ciphertext, we need to
replace || by [-] in the negacyclic function of (6) and go back to
our view of the “noise” as an integer in [-A/2,A/2).

However, we need to slightly modify the argument proving the
pseudorandomness of the resulting function. We may replace the
definition of PRF by

PRF(x) = (—1)msb(H(x).s) mod 2N)

’ [%«H(x),S) mod N)J mod p (10)

in Theorem 5.4 whilst changing the parameters (p, N) in the def-
inition of Gg. To see how, note that we can write [y] = |y] + b,
where by, is the bit of y just below the fixed binary point. Essentially,
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the reduction in the proof needs an extra bit in order to convert
the floor function to the rounding function (i.e., to simulate the
function in Eq. (10)). In order to gain access to this bit, one needs
to increase p in the definition of G by a factor of 2. The conclusion
is the following lemma.

LEMMA 5.5. Assume p = 2% and N = 2'N are powers-of-two such
thatk =ty — ¢, — 1> 0 and let S be a distribution with support on
Z". Take a random function H: {0, 1}* — (Z,\)" and assume that
Gy {0,1}" > Zyy,

Gy(x) = lg—ﬁ] - ((H(x),s) mod 2N)J mod 4p

is a pseudorandom function for seedss ~ S. Then, the function PRF :
0.1 -z,

PRFs(x) = (—1)m5b(<H(x),S) mod 2N)
. [% . (<H(x)> S> mod N)J mod p

is also a pseudorandom function for seedss ~ S . O

5.3 Reducing the Range for Padding

In TFHE and wider applications, it is often useful to have one or
more padding bits in the plaintext space [26]. A common practice is
to always leave the most significant bit of a plaintext as 0 when this
plaintext has to be involved in further homomorphic computations.
So far, we have not considered this issue.®

In the depth-2 construction of Section 3, a simple solution is to
modify the test polynomial of the second PBS and shift the bits of
all coefficients to the right. In the depth-1 case, we cannot do this
since it would unsuitably interfere with the (—1)msb({a.s) mod 2N)
factor during the blind rotation.

In the depth-1 case, we can address this problem by considering
yet another modified PRF. As before, we assume that the full plain-
text space has a power-of-two modulus p = 2%. However, we now
introduce a usable plaintext modulus p’ = 2" < p meaning that
we have £, — £, padding bits (that should be set to 0). The modified
PRF can then be described as

PRF(x) 2 (—1)msb({a.s) mod 2N)'([%~((a,s) mod N)| + %)
+ # mod p (11)

= (_1)msb((a,s) mod 2N) . l % . ((a, s) mod N) J
+ & — msb({a, s) mod 2N) (12)

which ranges over [0, p’ — 1]. To evaluate this function, we can
first apply Theorem 2.6 with Q = 2N to the function

I ZyN — qu
x> f(x) £ (—1)msb(). % . (lé%] -(xmod N)| + %)
which is negacyclic since

fx+N)=(-1)- f(x) =—f(x) mod 2N  Vxe€[0O,N—1] .

°In the application to transciphering in Supplementary Material C, it is not necessary
to keep the padding bit clear and we can use the full precision of the plaintext space.
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Then, after the PBS, we can add the term % . # to the evaluated

ciphertext.” Due to the additive homomorphism, this yields an
encryption of the correct PRF value (11).

We now argue the pseudorandomness of the function in (11).
Note that for any a,s € Z",

lpTéz - ({a,s) mod N)J mod & = lp;\éz -({a, sy mod N)J mod p
= lLA/,Z -({a, sy mod N)J

as the modular reduction mod(p’/2) and p is inconsequential. By
Theorem 5.3, if N > p’ /2, one can compute the above by dropping
the most significant bit of

l%, - ((a, s) mod 2N)J . (13)
Furthermore, by Theorem 5.2, if N > p’ /2,
msb((a, s) mod 2N) = msb([% -({a,s) mod 2N)J) . (14)

To prove the pseudorandomness property, we rely on the following
lemma whose proof is similar to that of the un-padded case.

LEMMA 5.6. Assume p’ = 2% and N = 2'N are powers of two
such that N > p’ /2 and let 8 a distribution with support on Z". Let a
random oracle H: {0,1}* — (Zy\)" and assume that Gg : {0, 1} —
Zp,,

Gy(x) = [ZLN ((H(x), sy mod 2N)J

is a pseudorandom function for s ~ S. Then, the function

PRF,: {0,1}* — {i%,i(l +3).x(2+ %)i(‘% -1+ %)}

PRF;(X) o (_1)msb((H(x),s) mod 2N)

' (lz’%- ((H(x),sy mod N) | + %)
is a pseudorandom function wheres ~ S.

Proor. We describe a reduction A that attempts to build a PPT
PRF distinguisher for G from any PPT distinguisher 2 for PRF’.
The reduction is as follows:

» When D wishes to query its oracle on input x, A forwards
the request on to its challenger, receiving § € Z,, in re-
sponse.

« Define g, = msb(g) € {0,1} and let g’ be the integer in
{0,..., p’ /2 — 1} resulting from dropping the MSB of g. A
sends f = (—1)% - (g’ + %) back to 2 in response to the
query x.

« A ultimately outputs whatever 2 does.

When A’s challenger is returning uniform values for g, A’s re-
sponse f that is sent to 2 is clearly uniform in the appropriate
range as .4’s operations are invertible. On the other hand, when
A’s challenger is using G to compute g, we can use Eq. (14) to
show that the exponent of (—1) is correct and Theorem 5.3 with
the parametrization in (13) to show that the remaining term (i.e.,
g’) is correctly computed for PRF}. Therefore, A perfectly simu-
lates 2’s PRF challenger which implies that 2’s advantage against

"This does not quite correspond to adding %’ = % to the plaintext since 1/2 is not
defined modulo p. However, it still provides an encryption of the correct PRF evaluation
(11) after the final addition.
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the pseudorandomness of PRFy is equal to that of A’s advantage
against G,. By assumption on the pseudorandomness of G, PRFj
must also be pseudorandom. O

We complete the proof of pseudorandomness for the function
defined in (11) by additively shifting the pseudorandom function
PRF; from the above lemma.

6 Implementation and Performance

In order to test our depth-1 construction in practice, we use the
TFHE-rs library (v0.6.1) using an AWS hpc7a.96xlarge instance
with 4th Gen AMD EPYC processor, 768 GiB total RAM and using
AVX512 on a single thread. We also provide benchmarks run on a
2022 Apple Macbook Pro with an Apple M2 chip and 8 GB RAM.
In particular, we test the latency (specifically, the time required to
perform the blind rotation step) of the homomorphic evaluation
of the PRF in Section 5.1. To ensure the practical relevance of our
results, we use practical TFHE parameter sets PARAM_MESSAGE_2_
CARRY_2 (where the bootstrapping key has size 23.9MB) and PARAM_
MESSAGE_1_CARRY_1 (with bootstrapping key size 11MB) instead
of some bespoke parameter set. Our benchmarks do not include
the computation of the hash value H(x) and therefore mimic cases
where the hash values have been precomputed e.g., transciphering
where the server stores the hashes. In any case, the time taken
to hash will be negligible compared to the runtime of homomor-
phic PRF evaluations, especially for short 128-bit or 256-bit in-
puts. Note that the plaintext space for PARAM_MESSAGE_2_CARRY_2
is effectively Z, for p = 2° as there are 2 “carry” bits, 2 “mes-
sage” bits and a padding bit (equaling 5 bits in total). Note that the
nomenclature arises from the fact that TFHE-rs is designed to im-
plement large integer arithmetic. Further, the ring dimension used
is N = 2048 = 2!1. Using the optimization outlined in Theorem 5.1
and Theorem 5.4, we require that LWR,, 1 6-sn 2 1({0,13) is hard.
Using the lattice estimator for unbounded m and modeling LWR
as LWE with uniform rounding noise, we conclude that we may
choose nyyp = 445 for an estimated 128 bits of security. Taking
n we to be the TFHE LWE dimension leads to a PRF evaluation key
that has a size of approximately nywg/nwg = 445/742 = 60% of
the size of a regular bootstrapping key. Making this choice leads to
a latency of 6.0328 ms (averaged over 60 seconds worth of trials).
Stated differently, we obtain a throughput of around 829 encrypted
pseudorandom bits on a single thread. Naturally, one can increase
this throughput by using multiple threads.

For the PARAM_MESSAGE_1_CARRY_1 parameter set, the plain-
text space is effectively set to p = 23 and the ring dimension is
N = 512 leading to nyywr = 409. The PRF evaluation key size in
this case is also approximately nywg/nwe = 409/702 = 60% of
the bootstrapping key. The latency in the depth-1 construction is
around 2.8029 ms (averaged over 60 seconds) leading to around
1070 pseudorandom bits per second on a single thread. The results
are summarized in Table 1.

Further Optimization. As mentioned in Remark 5.1, our condi-
tions on N are different to those in TFHE parameter selection and
reducing the size of N can offer improvements in efficiency. In
particular, we do not have to worry about any modulus switch-
ing error from q to 2N in our construction. We do however have
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Table 1: Single threaded experimental results. The first re-
ported result is on a hpc7a.96xlarge instance whereas the
second is on an Apple Macbook Pro.

Parameter set MESSAGE_1_CARRY_1 MESSAGE_2_CARRY_2

Plaintext bits 3 5
Latency (ms) 2.803/3.714 6.033 / 8.187
Throughput (bits/s) 1070 / 808 829 /611
Bootstrap Key 11.0 MB 23.9 MB
PRF Eval Key 6.4 MB 13.9 MB

to worry about choosing N and np g so that LWR holds with re-
spect to moduli 2N and 2p. We describe our strategy for optimizing
parameters next, defining k to be the module rank (as defined in
Definition 2.5) in the TFHE GLWE assumption. Suppose that we
are initially using parameters (N, k, nywg)- Then, we can move to
some k’, N = N /2 (for some integer k < log,(N)) and set nj
such that the LWR assumption in Theorem 5.4 holds.

Next, we must ensure that the new parameters are chosen so
that the output of our construction looks like a bootstrapped TFHE
PARAM_MESSAGE_X_CARRY_X ciphertext, particularly in terms of the
error size. A detail is that these parameter sets use the more efficient
“keyswitch then blind rotate” [14] pattern: i.e., the output to the
PBS is a (k - N + 1)-dimensional LWE ciphertext. On the other
hand, the output to our optimized scheme would be a (k- N’ + 1)-
dimensional LWE ciphertext. We will always assume that whenever
(k’,N’) # (k, N), we use distinct secret keys. In other words, we do
not share a secret key between a GLWE in dimensions (k’, N’) and
(k, N). This choice may be overly conservative, but may potentially
allow for a less heuristic security guarantee. Then, to summarize we
pick parameters to ensure that a blind rotation followed by a “k’ N’
to kN’ keyswitch results in a ciphertext under the correct key, with
the noise level of a bootstrapped ciphertext. We note that when
using the “blind rotate then keyswitch” pattern, the kK’ N’ to kN
keyswitch is unnecessary as one would simply keyswitch directly
down to the LWE dimension to obtain a bootstrapped ciphertext.
However, this pattern generally leads to an overall less efficient
FHE application.

Using the optimization techniques from [14], we obtain new
parameters and run benchmarks. Unfortunately, the optimized
PARAM_MESSAGE_1_CARRY_1 setting did not improve throughput,
even when ignoring the k’ N’ to kN keyswitch. Therefore, we do
not report on this parameter set. However, the optimization and im-
proved performance of the PARAM_MESSAGE_2_CARRY_2 is reported
in Table 2. A good choice for the dimension N’ in terms of latency
and key size appears to be 512. At this dimension, the throughput
increases by 16% (or 44%) on the hpc7a.96xlarge (respectively, lap-
top) whereas the evaluation key shrinks by around 5 MB or 36%
compared to results in Table 1. As can be seen in the latter table,
when N’ becomes small, the LWR dimension increases dramatically
hindering performance. Note that optimizing without the kK’ N’ to
kNkeyswitch does not appear to change the throughput here either.
In particular, removing the keyswitch still does not allow us to pick
k’ N’ < kN or improve the blind rotation decomposition param-
eters (which are already optimal in PARAM_MESSAGE_2_CARRY_2).
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We note that the key compression techniques of [55] could also be
applied to compress the size of the PRF evaluation key. However,
due to the tight noise constraints considered when optimizing the
parameters, we do not expect their techniques to be directly appli-
cable since they result in additional noise in the PRF evaluation key.
Instead, to utilize these techniques, it would be necessary to use
larger parameters, as in [55, 4]

Table 2: Single threaded experimental results with “opti-
mized” parameters for PARAM_MESSAGE_2_CARRY_2. The first
reported result is on a hpc7a.96xlarge instance whereas the
second is on an Apple Macbook Pro.

Parameter set

(N, K, niw]{)

Opt-2-2-256
(256, 8,980)
5

Opt-2-2-512 Opt-2-2-1024
(512,4,455)  (1024,2,455)

Plaintext bits 5 5
Latency (ms) 14.267 / 13.388  5.205/ 5.675 5.156 / 6.379
Throughput (bits/s) 350/ 373 961/ 881 970 / 784
PRF Eval Key 17.2 MB 8.9 MB 10.7 MB

Comparison With the State of the Art. We can compare the experi-
mental results of our technique with other state-of-the-art solutions.
In our case, we consider two of our results: the MESSAGE_1_CARRY_1
parameter set with performance measured on the hpc7a.96xlarge
and also the Opt-2-2-512 parameter set measured on the Apple
Macbook Pro. For comparison, we focus only on other TFHE-based
solutions, and do not consider works based on BFV or CKKS. In
particular, we compare against Transistor [13], and Trivium and
Kreyvium (which were evaluated in the TFHE setting in [10]).

We are interested in comparing the performance in multiple
ways: considering whether a setup phase is required, the latency
and throughput, and also the size of any additional evaluation key
material beyond that typically used in TFHE.

Table 3: Comparison of our techniques and existing state of
the art techniques based on the TFHE scheme.

Technique Setup? Latency (ms) Throughput Eval Key
MESSAGE_1_CARRY_1 no 2.803 1070 6.4 MB
Opt-2-2-512 no 5.675 881 8.9 MB
Transistor [13] no 251 65 780 B
Trivium [10] yes 121 529 36.4 MB

Kreyvium [10] yes 150 427 36.4 MB

The latency and throughput of our solution outperforms both
Transistor, and Trivium/Kreyvium (which also requires a warm-
up phase in the range of 2-3s). We note that Transistor requires
less public material (780 B) due to their requirement for only 96
LWE-encrypted ciphertexts, which is more compact than the nyy,
GGSW ciphertexts required in our solution. However, we note
that the additional key material required in our solution is smaller
than the associated bootstrapping key used in TFHE. Moreover,
our experimental parameter sets were optimized with latency in
mind: it is possible to explore a trade-off between the size of the
additional required key material and latency. Further, we note that
approach relies on standard LWR assumptions as opposed to be-
spoke block/stream cipher security.
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Supplementary Material

A Pseudorandom Functions

In this section, we recall the standard definition of pseudorandom
function families.

Definition A.1. Let A be a security parameter and let X" = X (4),
X =X (1), Y = Y(A) denote a key-space, an input space and a range
respectively. An efficiently computable function PRF : X'xX — Y
is pseudorandom if no probabilistic polynomial time distinguisher
has a non-negligible advantage as defined below. Let Q be the set
of all functions from X to Y. The advantage of a distinguisher 2
making Q evaluation queries is defined as

Advy () 1= [P DPRFEI(1A) = 1] - [ DFOH) = 1],

where the probability is taken over the random choice of K «
U(X) and F « U(Q) and the coin tosses of D.

B GGSW Ciphertexts

Generalized GSW (GGSW) encryption is a natural extension of
the scheme by Gentry, Sahai, and Waters [44] (in its ring version)
to higher ranks. GGSW ciphertexts play a central role in the pro-
grammable bootstrapping of TFHE as they enable the external
product of certain ciphertexts (as defined below). In particular, the
bootstrapping keys are GGSW encryptions of private-key compo-
nents.

Amit Deo, Marc Joye, Benoit Libert, Benjamin R. Curtis, and Mayeul de Bellabre

The simplest way to view GGSW ciphertexts is through gadget
decomposition of GLWE ciphertexts. Given a gadget vector g =
(g1s-qp) € jeg and a GLWE ciphertext ¢ <~ GLWE,(p) € Wé“
under private key 3 = (31, ..., 3;) € R, the corresponding gadget
GLWE ciphertext (usually indicated with a ’) is defined as

GLWE] (1) « (GLWE, (g - p), ..., GLWE, (g, - p)) -
This leveled encryption gives rise to a GGSW ciphertext; i.e.,

GGSW, (1) « (GLWE;(=2; - p), ..., GLWE; (= - p1),
GLWE](p)) .

Importantly, the external product of a GLWE ciphertext and a
GGSW ciphertext, denoted with ®, satisfies

GLWE, (41) ® GGSW,, (1) = GLWE, (py - pip + €1 - p1z)

where ¢, is the noise error present in GLWE, (). The output of
the external product is therefore a GLWE encryption of yy -
provided that message 5, is “small” so that e; - )| = [€1co-
This is the case for the TFHE bootstrapping keys, which are GGSW
encryptions of key bits (i.e., values in {0, 1}).

C On Transciphering Using TFHE

Consider a client wishing to send large amounts of data to the cloud
that will eventually be used in an FHE application—think for ex-
ample of image processing over encrypted data. Instead of sending
FHE encryptions of the data on the cloud, transciphering allows
the transmission of symmetric-key encryptions to dramatically re-
duce cloud bandwidth requirements. Specifically, the symmetric
encryptions sent on the cloud do not need to be any larger than the
original data, whereas FHE ciphertexts would be much larger. As an
example of this application, a symmetric encryption of a message M
can take the form (x, M PRFk(x)), where x is a random string of
sufficient length chosen by the sender.? Then, in order to obtain an
FHE encryption of M, the cloud can use an FHE encryption of k to
compute an FHE encryption of PRF;(x). From this encryption of
PRF(x), the cloud can homomorphically subtract PRF.(x) to ob-
tain an FHE encryption of M that can be computed on further. Note
that other forms of symmetric encryption (e.g., certain block-cipher
modes of operation) may also be used provided that PRF inputs
remain public.

As a concrete example, we may consider our depth-1 construc-
tion of Section 5.1 (or Section 5.2). This yields a symmetric encryp-
tion scheme where the sender chooses a random x « U({0, 1})
and encrypts M € ZIff using PRF secret key k = s < U({0, 1}") by
computing (x,¢) = (x, M + PRF4(x) mod p), where

Vie [m] . (PRFs(x))i & (_1)msb((H(x,i),s) mod 2N)

. l% ((H(x,1),s) mod N)J . (M

for a hash function H: {0,1}* — Z, modeled as a random oracle.
Then, the encryptor sends the ciphertext (x,¢) for storage. We
assume that the evaluator has a copy of the corresponding public

8This construction satisfies the definition of CPA security (see, e.g., [53, Chapter 3]) for
secret-key encryption schemes assuming that the underlying PRF is pseudorandom.
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bootstrapping key bsk = GGSW,.(s) for some GLWE secret key
3’ € R¥. From (x, ¢) and bsk, the evaluator can compute

(A,b=A"s+e+A-PRFy(x)) = Eval,,(bsk, x) € Zg"" x 2 ,

where § € Zg and |le|., < f for the bound S of Theorem 2.6. Then,
the evaluator obtains

(—A,—b+ A-cmod q)
which is an encryption of M € Zg under the secret key § since
(0,A - ¢) is a (trivial) encryption of c.

We also observe that, as in stream-cipher-based solutions, we
can dynamically decide to change the number m of plaintext blocks
if the need arises without changing anything to the parameters or
the key material. It only requires to update the number of indexes i
when the encryptor computes (**).

C.1 Comparison to the Naive Solution

The main advantage of the proposed solution is that the encryption
of m plaintexts in Z,, only requires sending a random seed x (typi-
cally, a 256-bit value) along with m values modulo p. This is much
better than the plain solution that would send a matrix A of m xn
entries modulo g plus m values modulo g (typically, n is of the order
of 1000). This is even better than the folklore improved solution
consisting in sending a seed o for building matrix A along with
m values modulo g. Our solution trades modulo-q values against
modulo-p values, where p « g; typically, p = 2% and ¢ = 24,
Compared to the improved solution, this saves m - log, q / p bits
of transmission. For example, for (1024 x 1024) 8-bit gray-scale
images, with p = 16 and q = 2%* (and thus m = 221), this results in
saving more than 108 bits per encrypted image.
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C.2 Comparison to Transciphering LWR

Assume here that g/(2p) € Z. One can interpret an LWR instance
(a,b = [g -aTsJ) S Zg x Z, as an LWE instance

(a,%~b)=(a,aTs+emodq)EZZqu .

In particular, the error ein the latter satisfies —q/(2p) < e < q/(2p).
Therefore, yet another way to reduce bandwidth/storage on a server
is for the client to send symmetric LWR encryptions [38] of M € Zg
taking the form

G =M+ [g -H(x,i)TsJ EZ,forie {1,...,m} .

These can then be interpreted as (potentially maximal noise) sym-
metric TFHE encryptions d; = %ci = H(x,i) s+¢+ %Ml When M
is required for some computation, the server may simply bootstrap
d; in order to get a small-noise TFHE ciphertext.

Setting g = 2N, we very nearly recover our proposed solution us-
ing the modified PRF. However, the performance is subtly different.
A first difference is that bootstrapping the ciphertext d; requires
two sequential bootstraps in the case that there is no padding bit
in M;. This issue does not arise in our modified PRF solution. A
second difference is that the symmetric-key cipher here depends
on an LWR assumption with moduli (p, 2N) whereas the modi-
fied PRF method uses an LWR assumption with moduli (2p, 2N)
which may require to choose a larger LWR dimension. However,

this increase in dimension is expected to be less than a factor of 2
meaning that our modified PRF method will likely be more com-

putationally efficient overall. As a realistic example, we may take
parameters N = 1024, p = 32 (Section 6). The required LWR dimen-
sion for moduli (2p, 2N) is 455 for around 128 bits of security. This
dimension decreases modestly to around 435 when using moduli

(p,2N).
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