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Inversion-Free Arithmetic on Elliptic Curves Through
Isomorphisms

Raveen R. Goundar · Marc Joye

Abstract This paper presents inversion-free formulas

for the efficient implementation of a scalar multipli-

cation over elliptic curves. Specifically, it proposes to

make use of curve isomorphisms as a way to avoid

the computation of inverses in point addition formu-

las. Interestingly, the presented techniques are indepen-

dent of the model used to represent the elliptic curve

and of the coordinate system used to represent the

points. In particular, they apply to affine representa-

tions. Further, whereas certain inversion-free techniques

are mostly limited to specific scalar multiplication al-

gorithms, the proposed techniques apply to all scalar

multiplication algorithms. The so-obtained formulas are

well suited to embedded systems and can easily be com-

bined with existing countermeasures to provide secure

implementations.

Keywords Elliptic curves · scalar multiplication ·
isomorphisms · affine coordinates

1 Introduction

Elliptic curve cryptography (ECC) [20,26] provides high

level of security (exponential security) in comparison

with the conventional RSA cryptosystem (subexponen-

tial security). The National Security Agency (NSA) [30]

and the National Institute of Standards and Technol-

ogy (NIST) [8] have published directives and standards,

naming ECC as a primarily strong method for protect-

ing classified and unclassified sensitive documents. Its
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smaller key size makes ECC particularly attractive for

small devices such as smart cards.

The efficiency of ECC is dominated by an opera-

tion called scalar multiplication (or point multiplica-

tion). The problem is, given a point PPP on an elliptic

curve (defined over a finite field) and a scalar k, to gen-

erate the point kPPP , that is, PPP +PPP + · · ·+PPP (k times) as

cost efficiently as possible. This problem is an obvious

analog of the exponentiation [9].

The elliptic curve group operations can be expressed

in terms of a number of operations in the definition

field. The crucial problem becomes to find the right

model to represent an elliptic curve in a way to mini-

mize the number of field operations. Indeed, as an el-

liptic curve is defined up to birational transformations,

there are plenty of possible choices for its represen-

tation. However, in order not to explode the number

of coordinates and operations, only models of elliptic

curves lying in low-dimensional spaces are considered

in practice [4]. Furthermore, the basic operations in-

volved in point addition formulas—namely, field addi-

tion/subtraction, field multiplication, and field inver-

sion, are not equivalent with each other. In particular,

field inversion requires a special attention as it may sig-

nificantly impact the overall performance [7]. For cryp-

tographic applications, typical ratios for inversion over

multiplication in the underlying finite field range from

3 to 100 [12]. For that reason, inversion-free point ad-

dition formulas are of particular interest. This is classi-

cally achieved by resorting to projective representations

(including the widely used homogeneous and Jacobian

coordinates). Numerous useful forms of elliptic curves

using various coordinate systems and their respective

costs are compiled in [2].

Our contributions We present a generic approach to

get rid of the field inversion operation in the evaluation
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of a scalar multiplication. Our approach can be seen as

a refinement of the so-called co-Z arithmetic developed

by Meloni [24]. Co-Z arithmetic was successfully ap-

plied to scalar multiplication algorithms (i) built from

Euclidean chains (i.e., using the Zeckendorf’s represen-

tation) in [24], (ii) for precomputation schemes in [22],

and (iii) using Montgomery-like ladders in [11]), for

Weierstraß elliptic curves over large-characteristic fields

with Jacobian coordinates. It was also recently applied

to hyperelliptic curves [13].

Basically, our approach is to consider the output

of a point addition as a point on some related ellip-

tic curve. For well-chosen related curves (i.e., isomor-

phic curves), this presents benefits similar to the ones

expected from the co-Z-based methods. But whereas

the co-Z methods were primarily designed for Jacobian

coordinates, the proposed approach provides a general

framework and thereby widens the range of applica-

tions and offered features. An important advantage of

recasting scalar multiplication algorithms with the lan-

guage of curve isomorphisms resides in its simplicity. It

makes apparent that Jacobian coordinates appear—in

some disguised form—as the natural choice to represent

points on Weierstraß elliptic curves. It also simplifies al-

gorithms. For example, Algorithms 6 and 7 in [11] are

Montgomery-like ladders using only the X- and Y -coor-

dinates of points represented in Jacobian coordinates.

While this stems from an astute observation that Z-

coordinates are not involved in co-Z point additions,

this again comes naturally using curve isomorphisms.

The proposed framework helps to better understand the

underlying arithmetic. It naturally applies to a variety

of elliptic curve models and scalar multiplication algo-

rithms. The deeper understanding of the inner work-

ings allows one to more easily discover implementation

tricks for improved performance and/or security of the

resulting algorithms.

Outline of the paper The rest of this paper is orga-

nized as follows. The next section is the core of our

paper. We describe new addition formulas using curve

isomorphisms—some background on elliptic curves can

be found in appendix. We then present applications

thereof in Sect. 3. A performance analysis and secu-

rity considerations are provided in Sect. 4. Finally, we

conclude the paper in Sect. 5.

2 Inversion-Free Arithmetic

2.1 Warming up

Before describing our method in its full generality, we

first make a couple of observations on the Weierstraß

model over a field of characteristic 6= 2, 3.

Consider the elliptic curve E1 over a field K, with

charK 6= 2, 3, given by

E1 : y2 = x3 + ax+ b . (1)

Given two finite points P1P1P1 = (x1, y1) and P2P2P2 = (x2, y2)

on E1 such that P1P1P1 6= ±P2P2P2 (i.e., such that x1 6= x2),

their sum is given by P3P3P3 = P1P1P1 +P2P2P2 = (x3, y3) where

x3 =

(
y1 − y2
x1 − x2

)2

− x1 − x2 and

y3 = (x1 − x3)

(
y1 − y2
x1 − x2

)
− y1 . (2)

The double of P1P1P1 = (x1, y1), provided that 2y1 +a1x1 +

a3 6= 0, is given by P4P4P4 = 2P12P12P1 = (x4, y4) where

x4 =

(
3x21 + a

2y1

)2

− 2x1 and

y4 = (x1 − x4)

(
3x21 + a

2y1

)
− y1 . (3)

A common way to avoid inversion is to resort to

a projective form for E1. For example, using Jacobian

coordinates, letting x = X/Z2 and y = Y/Z3, Equa-

tion (1) becomes

E1 : Y 2 = X3 + aXZ4 + bZ6 . (4)

A finite point P1P1P1 = (x1, y1) ∈ E1 is then represented

in Jacobian coordinates as a triplet (X1 : Y1 : Z1) with

X1 = x1Z1
2 and Y1 = y1Z1

3, for any Z1 ∈ K∗. There

is another way to view the Jacobian representation of

point P1P1P1. As detailed in Appendix A (taking r = s =

t = 0), for any u ∈ K∗, elliptic curve E1 is K-isomorphic

to elliptic curve

Eu : y2 = x3 + au4 x+ bu6 (5)

via the inverse mappings

Ψu : E1
∼→ Eu,

{
OOO 7→ OOO

(x, y) 7→ (u2x, u3y)

and

Ψ−1u : Eu
∼→ E1,

{
OOO 7→ OOO

(x̃, ỹ) 7→ (u−2x̃, u−3ỹ)
.
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With this view in mind, we can see point (X1, Y1) as

a point on the isomorphic curve EZ1
(compare Eq. (5)

with Eq. (4)).

Meloni observed in [24] that, on a short Weierstraß

elliptic curve E1 (cf. Eq. (4)), two finite points P1P1P1 =

(X1 : Y1 : Z) and P2P2P2 = (X2 : Y2 : Z) given in Jacobian

coordinates and sharing the same Z-coordinate can be

added faster to get P3P3P3 = P1P1P1 +P2P2P2 = (X3 : Y3 : Z3) ∈ E1.

Since two such points P1P1P1 and P2P2P2 can be regarded as two

points (X1, Y1) and (X2, Y2) given in affine coordinates

on a same isomorphic curve EZ (cf. Eq. (5)), we are led

to the following observations:

1. Defining ϕ := x1 − x2, we get from the above addi-

tion formula (Eq. (2))

ϕ2x3 = (y1 − y2)2 − ϕ2x1 − ϕ2x2 and

ϕ3y3 = (ϕ2x1 − ϕ2x3)(y1 − y2)− ϕ3y1 .

In other words, given points P1P1P1 and P2P2P2 on E1 (i.e.,

on EZ with Z = 1), one can easily obtain point

P̃3̃P3̃P3 := Ψϕ(P1P1P1 + P2P2P2) = (ϕ2x3, ϕ
3y3) on the isomor-

phic elliptic curve Eϕ. It is worth remarking that

no inversion is required in the evaluation of P̃3̃P3̃P3. We

let iADD denote the operation of getting P̃3̃P3̃P3 ∈ Eϕ.

2. A similar treatment applies to the point doubling

operation. Defining now ϕ := 2y1, we get from the

doubling formula (Eq. (3))

ϕ2x4 = (3x21 + a)2 − 2ϕ2x1 and

ϕ3y4 = (ϕ2x1 − ϕ2x4)(3x21 + a)− ϕ3y1 .

Namely, given a point P1P1P1 on E1, one can easily ob-

tain P̃4̃P4̃P4 := Ψϕ(2P1P1P1) = (ϕ2x4, ϕ
3y4) on Eϕ. As for

the point addition, it is worth remarking that no

inversion is required in the evaluation of P̃4̃P4̃P4. We let

iDBL denote this operation.

2.2 General description

Let E1l be an elliptic curve over a field K. Consider a

family {EΦ} of isomorphic elliptic curves, indexed by

some parameter Φ, under isomorphism ΨΦ : E1l
∼→ EΦ.

Parameter Φ is a description of the isomorphism; we

write Φ = desc(ΨΦ). We let F denote the set of all

possible Φ’s.

To simplify the exposition, we abuse the classical no-

tations for maps. We define three addition operations,

iADD, iADDU, and iADDC, given by

iADD: E1l × E1l → EΦ ×F ,
(P1P1P1,P2P2P2) 7→

(
ΨΦ(P1P1P1 +P2P2P2),Φ

)
iADDU: E1l × E1l → EΦ × EΦ ×F ,

(P1P1P1,P2P2P2) 7→
(
ΨΦ(P1P1P1 +P2P2P2), ΨΦ(P1P1P1),Φ

)
iADDC: E1l × E1l → EΦ × EΦ ×F ,

(P1P1P1,P2P2P2) 7→
(
ΨΦ(P1P1P1 +P2P2P2),

ΨΦ(P1P1P1 −P2P2P2),Φ
)

. (6)

For efficiency purposes, parameter Φ is chosen so that,

given two different points P1P1P1 and P2P2P2 on E1l, the output

of the addition operation does not require field inver-

sions.

We also define two doubling operations, iDBL and

iDBLU, given by
iDBL: E1l → EΦ ×F ,

P1P1P1 7→
(
ΨΦ(2P1P1P1),Φ

)
iDBLU: E1l → EΦ × EΦ ×F ,

P1P1P1 7→
(
ΨΦ(2P1P1P1), ΨΦ(P1P1P1),Φ

) . (7)

Likewise, parameter Φ is chosen so that, given a point

P1P1P1 on E1l, the output of the doubling operation does

not require field inversions.

More generally, given two elliptic curves EΦ and

EΦ′ being isomorphic to E1l, if

Ψϕ : EΦ
∼−→ EΦ′

denotes the isomorphism between EΦ and EΦ′ we sim-

ilarly define the operations

iADDΦ : EΦ × EΦ → EΦ′ ×F ,
(P1P1P1,P2P2P2) 7→

(
Ψϕ(P1P1P1 +P2P2P2),ϕ

)
iADDUΦ : EΦ × EΦ → EΦ′ × EΦ′ ×F ,

(P1P1P1,P2P2P2) 7→
(
Ψϕ(P1P1P1 +P2P2P2), Ψϕ(P1P1P1),ϕ

)
iADDCΦ : EΦ × EΦ → EΦ′ × EΦ′ ×F ,

(P1P1P1,P2P2P2) 7→
(
Ψϕ(P1P1P1 +P2P2P2),

Ψϕ(P1P1P1 −P2P2P2),ϕ
)

iDBLΦ : EΦ → EΦ′ ×F ,
P1P1P1 7→

(
Ψϕ(2P1P1P1),ϕ

)
iDBLUΦ : EΦ → EΦ′ × EΦ′ ×F ,

P1P1P1 7→
(
Ψϕ(2P1P1P1), Ψϕ(P1P1P1),ϕ

)

.(8)

Subscript Φ in the operator definition indicates that

input points belong to the elliptic curve EΦ.

Example 1 We illustrate the notation for general Weier-

straß elliptic curves; see Appendix A. In this case, we

have:

E1l : y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

and

Ψϕ : EΦ
∼−→ EΦ′ , (x, y) 7−→ (u2x+ r, u3y + u2sx+ t)

where ϕ = (u, r, s, t) and 1l = (1, 0, 0, 0). We also have

F =
{

(U,R, S, T ) ∈ K | U 6= 0
}

where K is the defini-

tion field of E1l.
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Table 1 Exemplary operation counts for basic addition formulas (M and S denote the cost of a field multiplication
and of a field squaring, respectively)

Model iADD iADDU iADDC iDBL
Weierstraß 4M + 2S 4M + 2S 5M + 3S 1M + 5S
Weierstraß (binary case)a 8M + 1S 8M + 1S 12M + 1S 5M + 5S
Twisted Edwardsb 10M + 1S 12M + 1S 13M + 1S –

a Using Stam’s parametrization.
b Presented point addition formulas are unified (i.e., they also work for point doubling).

2.3 Applications

The proposed approach is very general and applies to

any model of elliptic curves. The Weierstraß model over

a field K of characteristic charK 6= 2, 3 is sketched in

Sect. 2.1. We refer the reader to Appendix B for detailed

realizations of the new operations (i.e., iADD, iADDU,

iADDC, iDBL, and more) for the Weierstraß model and

to Sect. 4.2 for other elliptic curve models.

Table 1 lists various operation counts for certain

elliptic curve representations.

3 Efficient Scalar Multiplication

As aforementioned, the basic operation in elliptic curve

cryptography is the scalar multiplication. Given a point

PPP on an elliptic curve and a positive scalar k, one has

to evaluate kPPP = PPP +PPP + · · ·+PPP .

An addition chain for k is a list of integers, a0 =

1, a1, . . . , a` = k such that for each i > 1, there exists

some u and v with 1 6 u, v < i and ai = au + av [19,

§ 4.6.3]. Such a chain immediately gives rise to a scalar

multiplication algorithm. The question is how long the

addition chain is as this determines the running time.

Another question is the number of elements that have

to be kept in the addition chain to evaluate the next ele-

ments as this determines the memory requirements. Ef-

ficient scalar multiplication algorithms can therefore be

derived from short addition chains wherein the elements

are obtained from their direct predecessors and/or some

fixed elements.

3.1 Composition of isomorphisms

Applied to our framework, we further require that at

each step the two points being added lie on the same

elliptic curve. Jumping through curve isomorphisms, we

end up with the image of kPPP on some isomorphic elliptic

curve. This resulting point is then converted as a point

on the original curve so as to get the expected result,

namely kPPP . To do so, we need to explicitly know the

isomorphism between the final elliptic curve and the

original elliptic curve.

In more detail, if we let E(0) = E1l denote the origi-

nal elliptic curve, E(i) = EΦi
the current elliptic curve

at Step i, and E(`(k)) = EΦ`(k)
the final elliptic curve,

we have PPP ∈ E(0) and

Q̃̃Q̃Q := k
(
(Ψϕ`(k) ◦ · · · ◦ Ψϕi ◦ · · · ◦ Ψϕ1)PPP

)
∈ E(`(k))

or, schematically, as illustrated in Fig. 1.

The isomorphism between the current curve at Step i

and the original curve is given by ΨΦi
= Ψϕi ◦ · · · ◦Ψϕ1

.

Slightly abusing the notation, we also use symbol ◦
to denote the operation on the corresponding descrip-

tions, namely desc(ΨΦi) = ϕi ◦ · · · ◦ ϕ1. Since Q̃̃Q̃Q =

k
(
ΨΦ`(k)

(PPP )
)

= ΨΦ`(k)
(kPPP ), the result QQQ = kPPP ∈ E(0)

is then given by QQQ = ΨΦ`(k)

−1 (Q̃̃Q̃Q).

The ‘composed’ isomorphism ΨΦ`(k)
can be obtained

iteratively by observing that ΨΦi
= Ψϕi ◦ ΨΦi−1

with

ΨΦ0
= Id (i.e., the identity map). Since Φi = desc(ΨΦi

),

we get

Φi = ϕi ◦Φi−1 (9)

with Φ0 = desc(Id) := 1l.

Example 2 (Example 1 cont’d) In the case of general

Weierstraß elliptic curves, we have:

ΨΦi−1
: E(0) ∼−→ E(i−1), (x, y) 7−→

(Ui−1
2x+Ri−1, Ui−1

3y + Ui−1
2Si−1x+ Ti−1)

Ψϕi : E(i−1) ∼−→ E(i), (x, y) 7−→
(ui

2x+ ri, ui
3y + ui

2six+ ti)

where Φi−1 = (Ui−1, Ri−1, Si−1, Ti−1), ϕi = (ui, ri, si,

ti) and 1l = (1, 0, 0, 0). Hence, Equation (9) translates

into (Ui, Ri, Si, Ti) = (ui, ri, si, ti) ◦ (Ui−1, Ri−1, Si−1,

Ti−1) with
Ui = Ui−1ui

Ri = ui
2Ri−1 + ri

Si = uiSi−1 + si

Ti = ui
3Ti−1 + ui

2siRi−1 + ti

(10)

for i > 1, and (U0, R0, S0, T0) = (1, 0, 0, 0).
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PPP ∈ E(0)
Ψϕ1- . . .

Ψϕi−1- E(i−1)
Ψϕi- E(i)

Ψϕi+1- . . .
Ψϕ`(k)- Q̃̃Q̃Q ∈ E(`(k))

QQQ = kPPP ∈ E(0)

[k]

? � ΨΦ`(k)
−1 = (Ψϕ`(k)

◦···◦Ψϕi+1
◦Ψϕi

◦Ψϕi−1
◦···◦Ψϕ1

)−
1

Fig. 1 Composition of isomorphisms

3.2 Classical methods

The classical method for evaluating QQQ = kPPP considers

the binary representation of scalar k, k = (kn−1, . . . , k0)2
with ki ∈ {0, 1}, 0 6 i 6 n−1 [19, § 4.6.3]. Remarkably,

it requires a minimal amount of memory and is hence

well suited to memory-constrained devices like smart

cards. The method relies on the obvious relation that

kPPP = 2(bk/2cPPP ) if k is even and kPPP = 2(bk/2cPPP ) +PPP

if k is odd. Iterating the process yields a left-to-right

scalar multiplication algorithm, also known as double-

and-add method ; see Alg. 1. It requires two (point) vari-

ables, R0R0R0 and R1R1R1. Variable R0R0R0 acts as an accumula-

tor, and variable R1R1R1 is used to store the value of input

point PPP .

Algorithm 1 Double-and-add method

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = n− 1 down to 0 do
3: R0R0R0 ← 2R0R0R0

4: if (ki = 1) then R0R0R0 ← R0R0R0 +R1R1R1

5: end for
6: return R0R0R0

Algorithm 2 presents a straightforward implementa-

tion of the classical scalar multiplication method with

the new addition and doubling formulas. We use a vari-

able Φ to accumulate [the description of] the current

isomorphism with the original curve. This variable is

initialized to Φ = 1l (corresponding to the identity map

Id). As in Sect. 3.1, symbol ◦ denotes the composition

of [the description of] elliptic curve isomorphisms.

There is another possible way to implement the dou-

ble-and-add method (Alg. 1) with elliptic curve isomor-

phisms. When ki is equal to 1, variable R1R1R1 is added to

variable R0R0R0. But the content of variable R1R1R1 remains

invariant throughout the computation: R1R1R1 always con-

tains input point PPP . It is therefore not necessary to

constantly update it as a point on the current elliptic

curve. Instead, at iteration i, its representative on the

Algorithm 2 Double-and-add method (with elliptic

curve isomorphisms)

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP ; Φ← 1l
2: for i = n− 1 down to 0 do
3: (R0R0R0,ϕ)← iDBLΦ(R0R0R0); R1R1R1 ← Ψϕ(R1R1R1); Φ← ϕ ◦Φ
4: if (ki = 1) then
5: (R0R0R0,R1R1R1,ϕ)← iADDUΦ(R1R1R1,R0R0R0); Φ← ϕ ◦Φ
6: end if
7: end for
8: return Ψ−1

Φ (R0R0R0)

current elliptic curve, EΦ, can be computed from input

point PPP as ΨΦ(PPP ).

Algorithm 3 Double-and-add method (with elliptic

curve isomorphisms) − Version II

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP ; Φ← 1l
2: for i = n− 1 down to 0 do
3: (R0R0R0,ϕ)← iDBLΦ(R0R0R0); Φ← ϕ ◦Φ
4: if (ki = 1) then
5: (R0R0R0,ϕ)← iADDΦ

(
R0R0R0, ΨΦ(R1R1R1)

)
; Φ← ϕ ◦Φ

6: end if
7: end for
8: return Ψ−1

Φ (R0R0R0)

Remark 1 There exists a right-to-left variant. The re-

sulting algorithm, known as add-and-double method, is

depicted in Alg. 7 (in Appendix C). It also requires

two (point) variables, R0R0R0 and R1R1R1, but in this case both

act as accumulators. An implementation with the new

formulas is presented in Alg. 9 (in Appendix C).

3.3 Montgomery-like ladders

For several elliptic curve models, the point addition

formulas of two distinct points are independent of the

curve parameters. In this case, it is interesting to rely

on scalar multiplication algorithms that can be writ-

ten as a series of iADDU and iADDC operations. We
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quote two such algorithms: the Montgomery powering

ladder [28] and its dual version [16].

Algorithm 4 Montgomery ladder

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = n− 1 down to 0 do
3: b← ki
4: (R1−bR1−bR1−b,TTT )← (RbRbRb +R1−bR1−bR1−b,RbRbRb −R1−bR1−bR1−b)
5: RbRbRb ← R1−bR1−bR1−b + TTT
6: end for
7: return R0R0R0

The presentation of the algorithm is modified as

in [11]. In its original version, the main loop in Al-

gorithm 4 reads as R1−bR1−bR1−b ← RbRbRb + R1−bR1−bR1−b, RbRbRb ← 2RbRbRb.

Algorithm 4 is easily adapted with the new operations.

The value kn−1 = 1 leads to (R0R0R0,TTT ) = (PPP ,PPP ) and then

to R1R1R1 = PPP + PPP in the first iteration of Algorithm 4.

This last operation is a point doubling. In order not to

have to handle potential special cases, we assume that

kn−1 = 1 and hence start the for-loop at i = n − 2

and initialize (R0R0R0,R1R1R1) with (PPP , 2PPP ). For better perfor-

mance, this is carried out with the iDBLU operation.

Algorithm 5 Montgomery ladder (with elliptic curve

isomorphisms)

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with
kn−1 = 1

Output: QQQ = kPPP

1: (R1R1R1,R0R0R0,Φ)← iDBLU1l(PPP )
2: for i = n− 2 down to 0 do
3: b← ki
4: (R1−bR1−bR1−b,RbRbRb,ϕ)← iADDCΦ(RbRbRb,R1−bR1−bR1−b); Φ← ϕ ◦Φ
5: (RbRbRb,R1−bR1−bR1−b,ϕ)← iADDUΦ(R1−bR1−bR1−b,RbRbRb); Φ← ϕ ◦Φ
6: end for
7: return Ψ−1

Φ (R0R0R0)

The Montgomery ladder (Alg. 4) keeps invariant the

difference R1R1R1 −R0R0R0, which is equal to PPP . Equivalently,

variable TTT (← RbRbRb−R1−bR1−bR1−b) in Alg. 4 is equal to (−1)1−bPPP .

Therefore, at iteration i = 0, variable RbRbRb in our version

of the Montgomery ladder (Alg. 5) contains at Line 4

the value of

ΨΦ2n−2

(
(−1)1−k0PPP

)
.

This may allow one to explicitly recover the description

of ΨΦ2n−2
and consequently that of ΨΦ2n−1

as

Φ := desc(ΨΦ2n−1
) = ϕ2n−1 ◦ desc(ΨΦ2n−2

) .

As a result, we may obtain a Montgomery-like algo-

rithm where there is no need to keep track of the cur-

rent isomorphism: the iADDC and iADDU operations

only need to return the points and not the description

of the isomorphism of the resulting curve (i.e., param-

eter ϕ; cf. Sect. 2.2). This is indicated by symbol ′ on

the operator. This variant of the Montgomery ladder

also requires that the iADDC and iADDU operations

are independent of the curve parameters;1 this is indi-

cated by the absence of subscript Φ in the operator.

The resulting algorithm is detailed in Alg. 6.

Algorithm 6 Montgomery ladder (with elliptic curve

isomorphisms) − Version II

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with
kn−1 = 1

Output: QQQ = kPPP

1: (R1R1R1,R0R0R0)← iDBLU′1l(PPP )
2: for i = n− 2 down to 1 do
3: b← ki; (R1−bR1−bR1−b,RbRbRb)← iADDC′(RbRbRb,R1−bR1−bR1−b)
4: (RbRbRb,R1−bR1−bR1−b)← iADDU′(R1−bR1−bR1−b,RbRbRb)
5: end for
6: b← k0; (R1−bR1−bR1−b,RbRbRb)← iADDC′(RbRbRb,R1−bR1−bR1−b)
7: Recover Φ := desc(ΨΦ) from RbRbRb = ΨΦ

(
(−1)1−bPPP

)
8: (RbRbRb,R1−bR1−bR1−b,ϕ)← iADDUΦ(R1−bR1−bR1−b,RbRbRb); Φ← ϕ ◦Φ

9: return Ψ−1
Φ (R0R0R0)

Remark 2 A dual version of the Montgomery ladder

was given by Joye in [16]. It scans scalar k from the

right to the left; see Alg. 8 in Appendix C. For the

same reason that kn−1 is supposed to be 1 in the Mont-

gomery ladder, we assume that k0 = 1 in its right-to-left

variant. So in Alg. 10 (in Appendix C), we start the for-

loop at i = 2 and initialize (Rk1Rk1Rk1 ,R1−k1R1−k1R1−k1) with (PPP , 3PPP ).

Again this can be done with the new operations. When

k0 = 0, point PPP needs to be subtracted at the end of

the computation to get the correct result.

Joye’s double-add ladder (Alg. 8) enjoys a feature

analogous to the invariant in the Montgomery ladder.

It is easily seen that at iteration i in the for-loop of Al-

gorithm 8, temporary variable TTT contains the value of

2iPPP . Consequently, in Alg. 10, if |k|2 denotes the binary

length of k (i.e., |k|2 = n if kn−1 = 1) then, at the exit

of the for-loop, one has R0R0R0 +R1R1R1 = ΨΦ(2|k|2PPP ) —and

R0R0R0 = ΨΦ(kPPP ). This means that if the point YYY := 2|k|2PPP

is known in advance (e.g., precomputed), then the de-

scription of ΨΦ may be recovered from ΨΦ(YYY ), which

is obtained by adding R0R0R0 and R1R1R1 at the end of the

for-loop. This last operation should be performed with

an iADDU′ operation: (R1R1R1,R0R0R0) ← iADDU′(R0R0R0,R1R1R1) so

thatR1R1R1 contains ΨΦ(YYY ) andR0R0R0 contains ΨΦ(kPPP ). Sum-

ming up, when YYY is known, Algorithm 10 may be im-

1 As otherwise, at each step of the for-loop, the curve pa-
rameters should be updated with the current value of Φ for
evaluating iADDC/iADDU on the current isomorphic elliptic
curve .
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plemented with the cheaper iADDU′ and iADDC′ op-

erations.

3.4 Variants and extensions

3.4.1 Handling the neutral element OOO

For certain models (including the popular Weierstraß

model), the neutral element (i.e., point OOO) needs a spe-

cial treatment. This can be circumvented by adequately

adapting the initialization step. For the classical left-to-

right method, assuming that kn−1 = 1, we can start the

for-loop at i = n − 2 and set R0R0R0 ← PPP and R1R1R1 ← PPP in

Algs. 2 and 3 at the initialization step. Similarly, for the

right-to-left method, assuming that k0 = 1, we can start

the for-loop at i = 1 and set R0R0R0 ← PPP and R1R1R1 ← 2PPP

in Alg. 9 (Appendix C). When k0 = 0, we do the same

but subtract PPP at the end of the computation to get

the correct result.

3.4.2 Combined operations

A point doubling-addition is the evaluation of RRR =

2PPP + QQQ [22]. This can be done in two steps as TTT ←
PPP +QQQ followed by RRR ← PPP + TTT . If point RRR is needed

together with updated point PPP , this can be carried out

with two consecutive applications of the iADDU op-

eration: (TTT ,PPP ,ϕ1) ← iADDUΦ(PPP ,QQQ); (RRR,PPP ,ϕ2) ←
iADDUϕ1◦Φ(PPP ,TTT ).

Things are slightly more complex if we want to ob-

tain point RRR together with updated point QQQ (rather

than PPP ) at the end of the computation. This can be

performed by an evaluation of iADDU followed by an

evaluation of iADDC: (TTT ,PPP ,ϕ1) ← iADDUΦ(PPP ,QQQ);

(RRR,QQQ,ϕ2) ← iADDCϕ1◦Φ(TTT ,PPP ). We let (RRR,QQQ,ϕ) ←
iDAUΦ(PPP ,QQQ) denote the corresponding operation—where

ϕ = ϕ2 ◦ ϕ1 represents the isomorphism between the

initial elliptic curve and the final one; i.e., Ψϕ : EΦ
∼−→

EΦ′ and

iDAUΦ : EΦ × EΦ → EΦ′ × EΦ′ ×F ,
(P1P1P1,P2P2P2) 7→

(
Ψϕ(2P1P1P1 +P2P2P2), Ψϕ(P2P2P2),ϕ

)
.

As an illustration, the combined iDAU operation im-

mediately gives rise to an alternative implementation of

Joye’s double-add algorithm by replacing Lines 5 and 6

in Alg. 10 (in Appendix C) with the single line

(R1−bR1−bR1−b,RbRbRb,ϕ)← iDAUΦ(R1−bR1−bR1−b,RbRbRb); Φ← ϕ ◦Φ

This can be advantageous for certain parameterizations.

For example, when applied to the short Weierstraß model

with the formulas given in Appendix B the cost per

bit trades two (field) multiplications against two squar-

ings. Similar savings can be obtained for our implemen-

tation for Montgomery ladder (i.e., Alg. 6) by defin-

ing an operation iACAU′ as the combination of oper-

ation iADDC′ followed by operation iADDU′. Lines 3

and 4 in Alg. 6 are then replaced with (RbRbRb,R1−bR1−bR1−b) ←
iACAU′(RbRbRb,R1−bR1−bR1−b). Again we refer to Appendix B for

an illustration to the short Weierstraß model.

3.4.3 Signed-digit representations

Computing the inverse of a point generally comes al-

most for free on most elliptic curve models. In that case,

it can be worth considering signed-digit representations

for scalar k in the computation of QQQ = kPPP .

So, a common strategy to speed up the evaluation

of QQQ = kPPP on an elliptic curves is to rely on the non-

adjacent form (NAF) of scalar k [29]. The NAF is a

canonical representation using the set of digits {−1, 0, 1}
to uniquely represent an integer. The NAF has the

smallest Hamming weight; on average, only one third

of its digits are nonzero [32]. When the cost of point

inversion is negligible, it is therefore interesting to in-

put the NAF representation of k, k =
∑n
i=0 k

′
i 2i with

k′i ∈ {−1, 0, 1}, and to adapt the scalar multiplication

method accordingly. For example, when applied to Al-

gorithm 1, replacing Line 4 with

if (k′i 6= 0) then R0R0R0 ← R0R0R0 + (−1)k
′
iR1R1R1

the proportion of point additions roughly drops from

n/2 to n/3. Algorithm 7 (in Appendix C) can be adapted

similarly by replacing Line 3 with the above modifica-

tion.

Other scalar multiplication methods can benefit from

signed-digit representations. For example, in [33], Ri-

vain devises a Montgomery-like ladder from the zero-

less signed-digit (ZSD) expansion [31] (see also [27]).

Provided it is odd, scalar k =
∑n−1
i=0 k

′
i 2i is then ex-

pressed with digits k′i in {−1, 1} (i.e., without the zero

digit). The ZSD of k is easily obtained from its bi-

nary expansion, k =
∑n−1
i=0 ki 2i, as k′i = (−1)1+ki+1

for 0 6 i 6 n− 2 and k′n−1 = kn−1.

3.4.4 Higher-radix methods

It is well known that the classical methods can be im-

proved by using a higher-radix 2e for a suitable e > 1 to

represent the digits of scalar k [19]. For example, using

a signed-digit representation, the average proportion of

point additions during the main loop is approximatively

1/(e+1) (see [5] for a precise estimate). These methods,

however, require more memory resources since (2e−1 −
1) points need to be pre-computed and stored.



8 Raveen R. Goundar, Marc Joye

4 Discussion

Up to now, inversion-free arithmetic on elliptic curves

was achieved by resorting to projective representations.

So for example over a field K with charK 6= 2, 3, an

elliptic curve is usually represented using Jacobian co-

ordinates as triples (X : Y : Z) 6= (0 : 0 : 0) satisfying

the equation

Y 2 = X3 + aXZ4 + bZ6 .

Any two triples (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are

said equivalent if there exists a nonzero element θ ∈ K
such that X1 = θ2X2, Y1 = θ3Y2 and Z1 = θZ2. To

each finite point P1P1P1 = (x1, y1) on the short Weierstraß

curve y2 = x3 + ax+ b corresponds an equivalent triple

(x1Z
2 : y1Z

3 : Z) for some Z ∈ K \ {0}. The point at

infinity corresponds to Z = 0.

With the notation of Sect. 2.1, it is interesting to

note that a finite point P1P1P1 ∈ E1 with Jacobian coordi-

nates (X1 : Y1 : Z1) can be seen as a point (X1, Y1) on

the isomorphic Weierstraß elliptic curve

EZ1
: y2 = x3 + (aZ1

4)x+ (bZ1
6) .

This was already observed in [36, § 3.3] when design-

ing multiplicative coordinate blinding. As explained in

Sect. 2.1, adding two points with the same Z-coordinate

corresponds to adding two points on a same isomorphic

elliptic curve. With this correspondence in mind, it is

not too surprising that our algorithms inherit the same

good performance (and security features) from the al-

gorithms exploiting co-Z arithmetic [24,11].

But there are some differences. The co-Z scalar mul-
tiplication algorithms developed in [24] using the Zeck-

endorf’s representation and in [11] with Montgomery-

like ladders ensure that the Z-coordinate of the in-

put points is automatically shared. For general scalar

multiplication algorithms, the co-Z requirement can be

ensured by cross-multiplying the points. Specifically,

two input Jacobian points P1P1P1 = (X1 : Y1 : Z1) and

P2P2P2 = (X2 : Y2 : Z2) with Z1 6= Z2 are updated with the

equivalent representations P1P1P1 = (X1Z2
2 : Y1Z2

3 : Z)

and P2P2P2 = (X2Z1
2 : Y2Z1

3 : Z) where Z = Z1Z2. The

approach using curve isomorphisms require input points

to be on the same isomorphic curve. When this is not

the case, only one point needs to be updated. Another

difference is when the employed formulas involve curve

parameters, like, for example, the point doubling for-

mulas on Weierstraß elliptic curves. In this case, the

required curve parameters on the current isomorphic

curve need to be known in order to evaluate the corre-

sponding operation. These differences between the two

approaches may result in different performance.

Finally, as aforementioned, scalar multiplication al-

gorithms making use of our framework (i.e., curve iso-

morphisms) are simpler to understand and thus to an-

alyze. This in turn simplifies the implementation of ad-

ditional tricks to get further efficiency enhancements.

4.1 Performance analysis

It is useful to introduce some notation. In order to eval-

uate the elliptic curve arithmetic, we let M and S denote

the respective cost of a multiplication and of squaring

in the definition field. We do not distinguish between

general multiplication and multiplication by curve pa-

rameters because, even if chosen as small values, curve

parameters are likely to be full-size values after the first

hop.

4.1.1 Montgomery-like ladders

As detailed in Appendix B, for a Weierstraß elliptic

curve over a field K with charK 6= 2, 3, the cost of

operations iADD/iADDU, iADDC, and iDBL/iDBLU

are of 4M + 2S, 5M + 3S, and 1M + 5S, respectively. As

a result and because the iADDC and iADDU opera-

tions are independent of the curve parameters, simi-

larly to [11], our implementation of the Montgomery

ladder (Alg. 6) leads to a cost per bit of only (5M +

3S) + (4M + 2S) = 9M + 5S —or 8M + 6S by using the

iACAU′ operation.

The description of the isomorphism in Step 7 of Al-

gorithm 6 is recovered as

Φ = (−1)1−b
x(PPP ) y(RbRbRb)

y(PPP ) x(RbRbRb)
.

This step can be combined with the final step, Ψ−1Φ (R0R0R0),

so as to only compute a single inversion in K.

Furthermore, as in [11], it is also possible to de-

vise a signed variant with the same cost per bit (i.e.,

8M + 6S); see Alg. 11 (in Appendix C). Yet another

option is to instead start with the Joye’s double-add

ladder for the same cost per bit of 8M + 6S; see Alg. 12

(in Appendix C) for an illustration. This presents the

advantage of not involving point negations but requires

the prior knowledge of point YYY := 2|k|2PPP . We note that

it is not always necessary to know the whole representa-

tion of YYY . For example, for the short Weierstraß model

the knowledge of the ratio x(YYY )/ y(YYY ) is enough to re-

cover the description Φ of the final isomorphism.

4.1.2 Classical methods

The analysis of the classical methods is more interesting

as they are not covered with the previous algorithms
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making use of the co-Z arithmetic. As presented in

Alg. 3, the main loop of the double-and-add algorithm

looks like

(R0R0R0,ϕ)← iDBLΦ(R0R0R0); Φ← ϕ ◦Φ

if (ki = 1) then

R0R0R0 ← iADDΦ(R0R0R0, ΨΦ(PPP )); Φ← ϕ ◦Φ

end if

For the short Weierstraß model, the iDBL operation

(cf. Appendix B) involves curve parameter a, whose

current value is2 aΦ4. Its evaluation requires 1M + 2S.

The same is true for point PPP = (x, y) in the iADD oper-

ation; evaluating ΨΦ(PPP ) = (Φ2x, Φ3y) requires 3M+1S.

Finally, the definition on the new current curve (i.e., Φ)

should be kept track of as Φ ← ϕ · Φ; this requires 1M
for iDBL and 1M for iADD. Putting all together, the

double-and-add algorithm has an (average) cost per bit

of ((1M+5S)+(1M+2S)+1M)+ 1
2 ((4M+2S)+(3M+

1S) + 1M) = 7M + 8.5S. If scalar k in the computation

of kPPP is represented as a NAF, then the (average) cost

per bit drops to 5.67M + 8S.

This is already better than our best implementa-

tions of the Montgomery ladder (whatever the ratio

S/M). But we can do even better by caching the value

of curve parameter a. Instead of evaluating it as aΦ4,

we update it as a ← aϕ4 after every iDBL operation

and every iADD operation. The iDBL operation com-

putes the value 8L, which yields the value of ϕ4 as

ϕ4 = 2(8L). Hence, updating a as a← a(ϕ4) only costs

1M after an iDBL operation. The iADD operation com-

putes C = ϕ2 (but not ϕ4); hence, updating a requires

1M + 1S. As a result, the total (average) cost per bit

for Algorithm 3 reduces to ((1M + 5S) + 1M + 1M) +
1
2 ((4M+2S)+(3M+1S)+(1M+1S)+1M) = 7.5M+7S,

or 6M + 6.33S using a NAF-based representation.

4.2 Universality of the technique

Although our technique using curve isomorphisms was

vastly illustrated with the Weierstraß model over a large-

characteristic field, it can be applied to any elliptic

curve model. There are numerous models for represent-

ing elliptic curves. The choice of a model is guided by

performance issues (target device, number of field op-

erations, memory usage, etc.) and by security concerns

(resistance against certain implementation attacks) [12,

6].

In this section, for the sake of illustration, we study

two popular models: the Weierstraß form over binary

2 Since, as presented, in the short Weierstraß model the
description of the isomorphism comprises only one parame-
ter, we omit the arrow on ϕ and Φ; and ◦ becomes · (field
multiplication).

fields [15] and the (twisted) Edwards form over non-

binary fields [3,1,14]. Application to other models is

handled similarly. We refer the reader to [2] for further

models and their efficient arithmetic.

4.2.1 Weierstraß model (binary case)

Although curve parameter a1 can be chosen as a1 = 1

in the Weierstraß model over a field K of characteristic

2, it should nevertheless be explicitly included since it

will pop up through subsequent isomorphisms. So let

Ψϕ : E1
∼→ Eϕ, (x, y) 7→ (ϕ2x, ϕ3y) where

Eϕ : y2 + (a1ϕ)xy = x3 + (a2ϕ
2)x2 + (a6ϕ

6)

with a1, a2, a6 ∈ K, a1a6 6= 0, and ϕ ∈ K∗.
For the addition of two distinct points P1P1P1 = (x1, y1),

P2P2P2 = (x2, y2) ∈ E1, we define ϕ = x1 + x2. Then, we

have (x̃1, ỹ1) := Ψϕ(P1P1P1) = (ϕ2x1, ϕ
3y1) and (x̃3, ỹ3) :=

Ψϕ(P1P1P1 +P2P2P2) where

(x̃3, ỹ3) =
(
(y1 + y2)(y1 + y2 + (a1ϕ)) + (a2ϕ

2) + ϕ3,

(y1 + y2)(x̃3 + x̃1) + (a1ϕ)x̃3 + ỹ1
)
,

whose straightforward evaluation yields a cost of 8M +

1S for iADD/iADDU. Further, noting that −P2P2P2 = (x2,

y2+a1x2), the evaluation of Ψϕ(P1P1P1−P2P2P2) needs an extra

4M, leading to a cost of 12M+1S for iADDC. Note that

the formula gives for free the new curve parameters, a1ϕ

and a2ϕ
2, which may be needed for subsequent point

additions.

For the doubling of P1P1P1 = (x1, y1) ∈ E1, we define

ϕ = a1x1. Then (x̃1, ỹ1) := Ψϕ(P1P1P1) = (ϕ2x1, ϕ
3y1) and

(x̃4, ỹ4) := Ψϕ(2P1P1P1) where

(x̃4, ỹ4) =
(
x1

4 + a1
2a6, x1

2(x̃4 + x̃1) + a1x̃4(y1 + ϕ)
)
,

which can be evaluated with 5M+4S. We see here that it

can be useful to choose the parameterization proposed

by Stam [35, Lemma 1]; i.e., taking a6 = 1/a1
2 in E1.

Hence, for a point P1P1P1 ∈ EΦ the coordinate x̃4 is then

given by x̃4 = x1
4 + Φ8 = (x1 + Φ2)4, which involves

only squarings.

4.2.2 Twisted Edwards model

We assume charK 6= 2. We consider the general curve

equation [1, p. 401], y2+ax2 = c2(1+dx2y2). But there

is a slight complication because an isomorphism of the

form (x, y) 7→ (ϕx, ϕy) would require computing an in-

verse for evaluating the new d-parameter. This is easily

handled by replacing d by d−1 in the previous curve

equation. We therefore consider the family of curves
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induced by the isomorphism Ψϕ : E1
∼→ Eϕ, (x, y) 7→

(ϕx, ϕy) where

Eϕ : y2 + ax2 = (cϕ)2
(

1 + 1
dϕ4 x

2y2
)

with a, c, d ∈ K, c 6= 0, ad a non-square in K, and ϕ ∈
K∗. We present a unified addition formula. Specialized

formulas can be obtained in a similar way.

Let P1P1P1 = (x1, y1),P2P2P2 = (x2, y2) ∈ E1. We have

(x̃3, ỹ3) := Ψϕ(P1P1P1 +P2P2P2) where

(x̃3, ỹ3) =
(
(x1y2 + x2y1)(d2 − dx1x2y1y2),

(y1y2 − ax1x2)(d2 + dx1x2y1y2)
)

with ϕ = c(d+ x1x2y1y2)(d− x1x2y1y2). Hence, a uni-

fied iADD requires 10M + 1S. Updating P1P1P1 as Ψφ(P1P1P1)

requires an extra 2M, leading to 12M + 1S for a uni-

fied iADDU. Finally, since −P2P2P2 = (−x2, y2), a uni-

fied iADDC requires an extra 3M from iADD, lead-

ing to 13M + 1S. Note that parameter a is unchanged

through the isomorphism Ψϕ and so can be chosen as

a small value (for example, a = −1), saving 1M in

iADD/iADDU/iADDC.

4.3 Security considerations

For cryptographic applications, in addition of being effi-

cient, implementations should also be secure, including

against fault attacks [17] and side-channel attacks [23].

As they are generic, the methods developed in this

paper can advantageously be combined with existing

countermeasures to get implementations that are at the

same time efficient and protected. In particular, they

nicely combine with the random curve-isomorphism coun-

termeasure of [18]. Replacing 1l with [the description

of] a random isomorphism at the initialization step of

the scalar multiplication algorithm yields an inexpen-

sive protection against certain DPA-type attacks.

5 Conclusion

This paper introduced elliptic curve isomorphisms as a

generic way to get inversion-free point addition formu-

las. The resulting scalar multiplication algorithms are

efficient in both speed and memory—speed : the under-

lying point addition formulas do not involve field in-

version; and memory : the point representation leads to

a small memory footprint. They generalize and extend

the previous co-Z scalar multiplication algorithms (i.e.,

beyond the Weierstraß model over large prime fields

with Jacobian coordinates).
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27. Möller, B.: Securing elliptic curve point multiplication
against side-channel attacks. In: Information Security
(ISC 2001). LNCS, vol. 2200, pp. 324–334. Springer
(2001)

28. Montgomery, P.L.: Speeding up the Pollard and elliptic
curve methods of factorization. Mathematics of Compu-
tation 48(177), 243–264 (1987)

29. Morain, F., Olivos, J.: Speeding up the computations
on an elliptic curve using addition-subtraction chains.
RAIRO Theoretical Informatics and Applications 24(6),
531–543 (1990)

30. NSA names ECC as the exclusive technology for key
agreement and digital signature standards for the U.S.
government. Press release (March 2, 2005), announced
on February 16, 2005 at the RSA conference

31. Okeya, K., Takagi, T.: The width-w NAF method pro-
vides small memory and fast elliptic scalar multiplica-
tions secure against side channel attacks. In: Topics in
Cryptology − CT-RSA 2003. LNCS, vol. 2612, pp. 328–
342. Springer (2003)

32. Reitwiesner, G.W.: Binary arithmetic. Advances in Com-
puters 1, 231–308 (1960)

33. Rivain, M.: Fast and regular algorithms for scalar multi-
plication over elliptic curves. Cryptology ePrint Archive,
Report 2011/338 (2011), http://eprint.iacr.org/

34. Silverman, J.H.: The Arithmetic of Elliptic Curves.
Springer (1986)

35. Stam, M.: On Montgomery-like representationsfor ellip-
tic curves over GF(2k). In: Public Key Cryptography −
PKC 2003. LNCS, vol. 2567, pp. 240–253. Springer (2003)

36. Tunstall, M., Joye, M.: Coordinate blinding over large
prime fields. In: Cryptographic Hardware and Embedded
Systems − CHES 2010. LNCS, vol. 6225, pp. 443–455.
Springer (2010)

A Mathematical Background

Let K be a field. An elliptic curve E defined over K is given
by the Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

The set of points on E together with the formal point at
infinity OOO form a group under the chord-and-tangent law [34,
Chapter III].

Any two elliptic curves given the Weierstraß equations

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and

E′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

are isomorphic over K if and only if there exist u, r, s, t ∈ K,
u 6= 0, such that the linear change of variables

(x, y)← (u2x+ r, u3y + u2sx+ t)

transforms E into E′ [25, Theorem 2.2]. Such a transforma-
tion is said admissible and is the only change of variables fix-
ingOOO and preserving the Weierstraß form. The corresponding
curve parameters are related by

ua′1 = a1 + 2s ,

u2a′2 = a2 − sa1 + 3r − s2 ,
u3a′3 = a3 + ra1 + 2t ,

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st ,

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 .

Two settings are commonly used in cryptographic appli-
cations (e.g., see [8,15]): elliptic curves over a large prime field
K and non-supersingular elliptic curves over a large binary
field K. When the characteristic of K is not 2 or 3, one can
without loss of generality select a1 = a2 = a3 = 0. Likewise,
when the characteristic of K is 2 (binary field), provided that
the elliptic curve is non-supersingular, one can select a1 = 1
and a3 = a4 = 0.

B Short Weierstraß Model

Over a field of characteristic not equal to 2 or 3, the short
Weierstraß model can be used to represent the points of an
elliptic curve E1.

We define E1 : y2 = x3 + ax+ b and use the notation of
Sect. 2.1.

B.1 iADD and iADDU operations

From the addition formula (Eq. (2)), letting ϕ := x1−x2, we
get

ϕ2x3 = (y1 − y2)2 − ϕ2x1 − ϕ2x2 and

ϕ3y3 = (ϕ2x1 − ϕ2x3)(y1 − y2)− ϕ3y1 .

That is, given points P1P1P1 = (x1, y1) and P2P2P2 = (x2, y2) on

E1, one can easily obtain P̃3̃P3̃P3 := Ψϕ(P1P1P1 +P2P2P2) = (ϕ2x3, ϕ3y3)
on Eϕ without inversion. In more detail, the evaluation of

P̃3̃P3̃P3 = (x̃3, ỹ3) can be done as

ϕ = x1 − x2, C = ϕ2, W1 = x1C, W2 = x2C,

D = (y1 − y2)2, A1 = (W1 −W2)y1,

x̃3 = D −W1 −W2, ỹ3 = (W1 − x̃3)(y1 − y2)−A1 .

We let iADD denote this operation; the cost of which amounts
to 4M + 2S —where M and S denote the cost of a field mul-
tiplication and of a squaring, respectively.

Obtaining P̃1̃P1̃P1 := Ψϕ(P1P1P1) = (ϕ2x1, ϕ3y1) comes from free

during the course of the evaluation of P̃3̃P3̃P3. Indeed, we imme-
diately have P̃1̃P1̃P1 = (x̃1, ỹ1) with

x̃1 = W1 and ỹ1 = A1 .

We let iADDU denote the operation of getting P̃3̃P3̃P3 together
with P̃1̃P1̃P1; the total cost of which is 4M + 2S.
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B.2 iADDC operation

Since −P2P2P2 = (x2,−y2), it follows that P1P1P1 − P2P2P2 = (x′3, y
′
3)

satisfies

ϕ2x′3 = (y1 + y2)2 − ϕ2x1 − ϕ2x2 and

ϕ3y′3 = (ϕ2x1 − ϕ2x′3)(y1 + y2)− ϕ3y1 .

Hence, once P̃3̃P3̃P3 has been evaluated, the evaluation of P̃ ′3P̃
′
3P̃
′
3 :=

Ψϕ(P1P1P1 − P2P2P2) = (x̃′3, ỹ
′
3) only requires an additional cost of

1M + 1S, since

x̃′3 = (y1 + y2)2 −W1 −W2 and

ỹ′3 = (W1 − x̃′3)(y1 + y2) − A1 .

We let iADDC denote the corresponding operation, the total
cost of which is 5M + 3S.

B.3 iDBL and iDBLU operations

From the doubling formula (Eq. (3)), letting now ϕ := 2y1,
we get

ϕ2x4 = (3x21 + a)2 − 2ϕ2x1 and

ϕ3y4 = (ϕ2x1 − ϕ2x4)(3x21 + a)− ϕ3y1 .

(Note here that a is the parameter on the current curve.)

That is, given points P1P1P1 on E1, one can obtain P̃4̃P4̃P4 :=
Ψϕ(2P1P1P1) = (ϕ2x4, ϕ3y4) on Eϕ. In more detail, the evalua-

tion of P̃4̃P4̃P4 = (x̃4, ỹ4) can be done as

B = x1
2, E = y1

2, L = E2,

M = 3B + a, S = 2((x1 + E)2 −B − L),

x̃4 = M2 − 2S, ỹ4 = M(S − x̃4)− 8L .

We let iDBL denote this operation; the cost of which amounts
to 1M + 5S.

Moreover, obtaining P̃1̃P1̃P1 := Ψϕ(P1P1P1) = (ϕ2x1, ϕ3y1) comes

from free during the course of the evaluation of P̃4̃P4̃P4. We have
P̃1̃P1̃P1 = (x̃1, ỹ1) with x̃1 = S and ỹ1 = 8L. The corresponding
operation is denoted iDBLU.

B.4 iDAU operation and the likes

Let RRR = 2P1P1P1 +P2P2P2 on E1. One can easily obtain R̃̃R̃R := Ψϕ(RRR)

together with P̃1̃P1̃P1 := Ψϕ(P1P1P1) as (TTT ,VVV , ϕ1) = iADDU(P1P1P1,P2P2P2)

followed by (R̃̃R̃R, P̃1̃P1̃P1, ϕ2) = iADDU(VVV ,TTT ), and ϕ = ϕ1ϕ2. A
straightforward implementation requires 2×(4M+2S)+1M =
9M+4S. In a way similar to [10,11], two (field) multiplications
can be traded against two squarings using the basic identity
2AB = (A+B)2−A2−B2, which leads to a cost of 7M + 6S.

Explicitly, if P1P1P1 = (x1, y1) and P2P2P2 = (x2, y2) then P̃1̃P1̃P1 =

(x̃1, ỹ1) and R̃̃R̃R = (x̃R, ỹR) on Eϕ where

C′ = (x1 − x2)2, W ′1 = x1C
′, W ′2 = x2C

′,

D′ = (y1 − y2)2, A′1 = 2y1(W ′1 −W ′2),

x′3 = D′ −W ′1 −W ′2, C = (x′3 −W ′1)2,

y′3 = (y1 − y2 +W ′1 − x′3)2 −D′ − C −A′1,
x̃1 = 4W ′1C, W2 = 4x′3C, ỹ1 = A′1(x̃1 −W2),

D = (A′1 − y′3)2,

x̃R = D − x̃1 −W2, ỹR = (x̃1 − x̃R)(A′1 − y′3)− ỹ1,
ϕ = (x1 − x2 +W ′1 − x′3)2 − C′ − C .

In the same way, when one wants R̃̃R̃R := Ψϕ(RRR) together

with P̃2̃P2̃P2 := Ψϕ(P2P2P2), the iDAU operation can be evaluated
with 8M + 7S (instead of 10M+5S from a straightforward ap-
plication of iADDU followed by iADDC). In more detail, with

the same notations as above, one can obtain P̃2̃P2̃P2 = (x̃2, ỹ2)

and R̃̃R̃R = (x̃R, ỹR) on Eϕ together with ϕ as

C′ = (x1 − x2)2, W ′1 = x1C
′, W ′2 = x2C

′,

D′ = (y1 − y2)2, A′1 = 2y1(W ′1 −W ′2),

x′3 = D′ −W ′1 −W ′2, C = (x′3 −W ′1)2,

y′3 = (y1 − y2 +W ′1 − x′3)2 −D′ − C −A′1,
W1 = 4x′3C, W2 = 4W ′1C, A1 = y′3(W1 −W2),

D = (y′3 −A′1)2,

x̃R = D −W1 −W2, ỹR = (W1 − x̃R)(y′3 −A′1)−A1,

ϕ = (x1 − x2 + x′3 −W ′1)2 − C′ − C ,D = (y′3 +A′1)2,

x̃2 = D −W1 −W2, ỹ2 = (y′3 +A′1)(W1 − x̃2)−A1 .

When ϕ does not need to be returned, we see that one
squaring is saved. In other words, iDAU′ can be evaluated
with 8M + 6S.

For completeness, we describe iACAU′ as the combina-
tion of operation iADDC′ followed by the operation iADDU′.
A straightforward implementation requires (5M+3S)+(4M+
2S) = 9M + 5S. However, we can mimic the trick of [10] by
adding the squared difference of the x-coordinates as an input
to iACAU′. This allows one to trade 1M against 1S, yielding
a cost of 8M + 6S. A detailed implementation follows.

The input is P1P1P1 = (x1, y1), P2P2P2 = (x2, y2), and C = (x1−
x2)2, and the output is (R̃̃R̃R, S̃̃S̃S, C̃) = iACAU′(P1P1P1,P2P2P2, C) with

R̃̃R̃R = (x̃R, ỹR), SSS = (x̃S , ỹS) and where

(R̃̃R̃R, S̃̃S̃S) = iADDU
(
iADDC(P1P1P1,P2P2P2)

)
and C̃ = (x̃R − x̃S)2.

W1 ← x1C, W2 ← x2C, D ← (y1 − y2)2,

A1 ← y1(W1 −W2),

x′1 ← D −W1 −W2, y
′
1 ← (y1 − y2)(W1 − x′1)−A1,

D ← (y1 + y2)2,

x′2 ← D −W1 −W2, y
′
2 ← (y1 + y2)(W1 − x′2)−A1,

C′ ← (x′1 − x′2)2,

x4 ← x′1C
′, W ′2 ← x′2C

′, D′ ← (y′1 − y′2)2,

y4 ← 2y′1(x4 −W ′2),

x3 ← D′ − x4 −W ′2, C ← (x3 − x4)2,

y3 ← (y′1 − y′2 + x4 − x3)2 −D′ − C − y4,

x̃R ← 4x3, ỹR ← 4y3, x̃S ← 4x4, ỹS ← 4y4, C̃ ← 16C .
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Remark 3 The formulas presented in this section make use
of the square-multiply replacement technique. On some ar-
chitectures, depending on the cost of a field addition, this is
counterproductive. We refer the reader to [21] for some dedi-
cated optimizations.

C More Scalar Multiplication Algorithms

We describe in this appendix a number of scalar multiplica-
tion algorithms.

C.1 Right-to-left scalar multiplication

We review two scalar multiplication algorithms. They both
process the bits of scalar k from the right to the left. Algo-
rithm 7 is the classical right-to-left method [19]. Algorithm 8
is a dual version of the Montgomery ladder. It was proposed
in [16].

Algorithm 7 Add-and-double method

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = 0 to n− 1 do
3: if (ki = 1) then R0R0R0 ← R0R0R0 +R1R1R1

4: R1R1R1 ← 2R1R1R1

5: end for
6: return R0R0R0

Algorithm 8 Joye’s double-add ladder

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = 0 to n− 1 do
3: b← ki; TTT ← R1−bR1−bR1−b +RbRbRb
4: (R1−bR1−bR1−b,RbRbRb)← (TTT +R1−bR1−bR1−b,TTT −R1−bR1−bR1−b)
5: end for
6: return R0R0R0

C.2 Scalar multiplication with elliptic curve

isomorphisms

Below are some examples of scalar multiplication algorithms
when used with the methodology of elliptic curve isomor-
phisms.

Algorithm 9 Add-and-double method (with elliptic

curve isomorphisms)

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP ; Φ← 1l
2: for i = 0 to n− 1 do
3: if (ki = 1) then
4: (R0R0R0,R1R1R1,ϕ)← iADDUΦ(R1R1R1,R0R0R0); Φ← ϕ ◦Φ
5: end if
6: (R1R1R1,ϕ)← iDBLΦ(R1R1R1); R0R0R0 ← Ψϕ(R0R0R0); Φ← ϕ ◦Φ
7: end for
8: return Ψ−1

Φ (R0R0R0)

Algorithm 10 Joye’s double-add ladder (with elliptic

curve isomorphisms)

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with k0 = 1
Output: QQQ = kPPP

1: (R1R1R1,R0R0R0,Φ)← iDBLU1l(PPP )
2: (R1−k1

R1−k1
R1−k1

,Rk1
Rk1
Rk1

,ϕ)← iADDUΦ(R0R0R0,R1R1R1); Φ← ϕ ◦Φ
3: for i = 2 to n− 1 do
4: b← ki
5: (RbRbRb,R1−bR1−bR1−b,ϕ)← iADDUΦ(R1−bR1−bR1−b,RbRbRb); Φ← ϕ ◦Φ
6: (R1−bR1−bR1−b,RbRbRb,ϕ)← iADDCΦ(RbRbRb,R1−bR1−bR1−b); Φ← ϕ ◦Φ
7: end for
8: return Ψ−1

Φ (R0R0R0)

Algorithm 11 Montgomery ladder (with elliptic curve

isomorphisms) − Version III

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with
kn−1 = k0 = 1

Output: QQQ = kPPP

1: (R1R1R1,R0R0R0)← iDBLU′1l(PPP ); (R0R0R0,R1R1R1)← iADDC′(R1R1R1,R0R0R0)
2: for i = n− 2 down to 1 do
3: b← ki ⊕ ki−1; R1R1R1 ← (−1)bR1R1R1

4: (R0R0R0,R1R1R1)← iDAU′(R0R0R0,R1R1R1)
5: end for
6: b← k1
7: Recover Φ := desc(ΨΦ) from R1R1R1 = ΨΦ

(
(−1)1−bPPP

)
8: return Ψ−1

Φ (R0R0R0)

Algorithm 12 Joye’s double-add ladder (with elliptic

curve isomorphisms) − Version II

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with k0 = 1
Output: QQQ = kPPP

1: (R1R1R1,R0R0R0)← iDBLU′1l(PPP )
2: b← k1; (R1−bR1−bR1−b,RbRbRb)← iADDU′(R0R0R0,R1R1R1)
3: for i = 2 down to n− 1 do
4: b← ki; (R1−bR1−bR1−b,RbRbRb)← iDAU′(R1−bR1−bR1−b,RbRbRb)
5: end for
6: (R1R1R1,R0R0R0)← iADDU′(R0R0R0,R1R1R1)
7: Recover Φ := desc(ΨΦ) from R1R1R1 = ΨΦ

(
2|k|2PPP

)
8: return Ψ−1

Φ (R0R0R0)
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