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Abstract. It has been recently shown that sharing a common coordi-
nate in elliptic curve cryptography implementations improves the per-
formance of scalar multiplication. This paper presents new formulæ for
elliptic curves over prime fields that provide efficient point addition and
doubling using the Montgomery ladder. All computations are performed
in a common projective Z-coordinate representation to reduce the mem-
ory requirements of low-resource implementations. In addition, all given
formulæ make only use of out-of-place operations therefore insuring that
it requires no additional memory for any implementation of the under-
lying finite-field operations whatsoever. Our results outperform existing
solutions in terms of memory and speed and allow a fast and secure im-
plementation suitable for low-resource devices and embedded systems.
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1 Introduction

Elliptic curve cryptography (ECC) [17, 27] has gained much importance in the
field of low-resource devices such as smart cards and Radio Frequency Identifi-
cation (RFID) devices. The main benefits of ECC compared to traditional cryp-
tographic primitives like RSA [30] are the significant improvements in terms of
speed and memory. In fact, memory is one of the most expensive resources in the
design of embedded systems which encourages the use of ECC on such platforms.
In this paper, we present new formulæ for ECC implementations that allow very
efficient (speed-wise and memory-wise) computations especially applicable to
resource-constrained devices.



Among the most resource-consuming operation in ECC implementations is
the scalar multiplication. A secret scalar k is multiplied with a point PPP on an
elliptic curve E(Fq) resulting in the point QQQ. This operation is used in many
cryptographic primitives which rely on the intractability of solving the elliptic
curve discrete logarithm problem (ECDLP), i.e. finding the discrete logarithm
for QQQ with respect to the elliptic curve point PPP .

In view of embedded systems, where memory and computational power are
scarce resources, there exist many proposals to improve the scalar multiplication.
One of the most prominent methods is the so-called Montgomery ladder [28].
First, it allows one to omit the y-coordinate of the involved elliptic curve points
which lowers the memory requirements for low-resource designs. Second, it im-
plicitly provides resistance against certain implementation attacks [16, 20, 24]
which encourages its use in security-related applications.

Another improvement was proposed by Meloni [25] in 2007. He showed that
points on an elliptic curve can be added quickly when they share a common co-
ordinate, e.g. the projective Z-coordinate. Meloni applied the formula to specific
Euclid addition chains to perform a scalar multiplication. However, the obser-
vation not only improves the speed of ECC implementations but reduces even
the memory requirements by one coordinate as practically shown by Lee and
Verbauwhede [22] over binary fields.

Recently, Goundar et al. [10] extended the idea of Meloni and provided
formulæ over prime fields that can be even applied to classical binary scalar
multiplication methods. They introduced a new operation (conjugate co-Z addi-
tion) that can be used together with the addition formula of Meloni to perform
fast computations with points sharing the same Z-coordinate (co-Z arithmetic).
However, the method has not been applied to the x-coordinate only version of
the Montgomery ladder so far.

In this paper, we present new formulæ for elliptic curves over finite fields of
characteristic q 6= 2, 3 that apply the co-Z method to the Montgomery ladder
scalar multiplication. The given formulæ perform a differential addition-and-
doubling operation of elliptic curve points using x-coordinates only, i.e. two
projective X-coordinates of the involved points and a common Z-coordinate.
It shows that the formulæ lead to very efficient scalar multiplications especially
suitable to low-resource devices. In addition, we consider the practical constraint
imposed by the implementations of both the modular multiplication and the
modular squaring which may not support the result to be written in-place, that
is overwriting one of the operands. This constraint is common in practice since it
allows to save memory with many efficient implementations of those operations
as discussed later and it can be imposed by the hardware accelerator when one
is available. Unfortunately this typically implies the need of more memory than
claimed in order to implement formulæ which have been designed with in-place
operations. To our best knowledge, it is indeed the first paper that provides
formulæ that use out-of-place operations guaranteing that no additional memory
is necessary even when the finite-field arithmetic computations do not support



in-place results. Our outcomes improve the state of the art in low-resource ECC
implementations in terms of both memory and speed.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
elliptic curve cryptography. Section 3 describes different scalar-multiplication
methods including the Montgomery ladder. Section 4 presents new formulæ for
(differential) addition-and-doubling and projective coordinate recovery in co-Z
coordinates. Section 5 discusses the difference between in-place versus out-of-
place formulæ for ECC. In Section 6, the results are discussed in terms of security
and performance. Conclusions are drawn in Section 7.

2 Preliminaries

This section introduces some elementary background on elliptic curves. We refer
the reader to e.g. [11] for further details.

An elliptic curve E over a finite field Fq of characteristic 6= 2, 3 can be defined
by the short Weierstraß equation

E : y2 = x3 + ax+ b ,

where a, b ∈ Fq are curve parameters satisfying 4a3+27b2 6= 0 and (x, y) ∈ Fq×Fq

represents a point on the elliptic curve. The set of all points on the elliptic curve
together with the point at infinityOOO is denoted by E(Fq). It forms an (additively
written) abelian group with the point at infinity OOO as the identity element.

Scalar multiplication. The main operation in elliptic curve cryptography
(ECC) is the scalar multiplication, QQQ = kPPP , where PPP and QQQ are points on
the curve E and k is a scalar such that 0 ≤ k < ordE(PPP ). The security of ECC
primitives relies on the intractability to solve the elliptic curve discrete logarithm
problem (ECDLP), i.e. determining k from PPP and QQQ.

Point representation. The scalar multiplication uses two basic operations that
are addition and doubling of points. The points can be represented in several
coordinate systems. Points in affine coordinates are represented by two coordi-
nates x and y but involve the computation of inversions in Fq which are relatively
expensive operations. Due to these reasons, most implementations represent the
points in projective coordinates. In homogeneous projective coordinates, each
affine point (x, y) is represented by three coordinates (X,Y, Z) where x = X/Z
and y = Y/Z. Another coordinate system that is widely used in practice is
the Jacobian projective coordinate system. There, the relation x = X/Z2 and
y = Y/Z3 is used to represent the points. The curve equation in Jacobian coor-
dinates becomes E : Y 2 = X3 + aXZ4 + bZ6.



Point addition. Let P1P1P1 = (X1, Y1, Z1) and P2P2P2 = (X2, Y2, 1) be two points
represented in Jacobian projective coordinates on the curve. Then the sum P1P1P1 +
P2P2P2 = (X3, Y3, Z3) (also known as mixed sum since Z2 = 1), is given by


X3 = (Y2Z1

3 − Y1)2 − (X2Z1
2 −X1)2(X1 +X2Z

2
1 )

Y3 = (Y2Z1
3 − Y1)(X1(X2Z1

2 −X1)2 −X3)− Y1(X2Z1
2 −X1)3

Z3 = (X2Z1
2 −X1)Z1

. (1)

The formula for point doubling, 2P1P1P1 = (X4, Y4, Z4), is given by
X4 = (3X1

2 + aZ1
4)2 − 8X1Y1

2

Y4 = (3X1
2 + aZ1

4)(4X1Y1
2 −X3)− 8Y1

4

Z4 = 2Y1Z1

. (2)

To evaluate the costs of the given formulæ we denote by M the cost of a field
multiplication and by S the cost of a field squaring. For multiplications with
fixed parameters such as the curve parameters, we use the notation M? (e.g. Ma,
Mb). Additions and subtractions are later assumed to have the same complexity
and are represented by add.

Evaluating formulæ (1) and (2) in terms of computational cost shows that
a point addition needs 7M + 4S if Z2 = 1 [11]. Point doubling can be per-
formed with 4M + 4S or 1M + 8S + 1Ma. For comparability reasons, we use the
same performance metric as in the dedicated website Explicit Formulas Database
(EFD) [6].

Co-Z arithmetic. In 2007, Meloni proposed new point addition and doubling
formulæ in Jacobian coordinates where the two involved points share the same
Z-coordinate [25]. We refer to this coordinate system as the co-Z coordinate
system. When the two points satisfy this condition, the addition of two points can
be evaluated much faster than an addition in Jacobian coordinates (actually even
faster than a doubling operation in Jacobian coordinates). Let P1P1P1 = (X1, Y1, Z)
and P2P2P2 = (X2, Y2, Z) the two points that share the same Z-coordinate, then the
sum of the two points, P1P1P1 +P2P2P2 = P3P3P3 = (X3, Y3, Z3), is given by

X3 = (Y2 − Y1)2 −X2(X2 −X1)2 −X1(X2 −X1)2

Y3 = (Y2 − Y1)[X1(X2 −X1)2 −X3]− Y1(X2 −X1)3

Z3 = Z(X2 −X1)

. (3)

This addition only requires 5M + 2S. As observed in [25], the given formulæ
have the advantage of providing an equivalent representation P ′1P

′
1P
′
1 of the point

P1P1P1 = (X1, Y1, Z) such that the points P1′P1′P1′ and P3P3P3 have the same Z-coordinate
value. Namely P ′1P

′
1P
′
1 = (X1λ

2, Y1λ
3, Zλ) with λ = (X2−X1), is calculated without

any additional cost since the coordinates are already computed as intermediate
values in the addition formula (cf. Eq. (3)).



3 Scalar Multiplication Methods

There exist several algorithms to perform the scalar multiplication.

One of the most common methods is the double-and-add algorithm (a.k.a.
left-to-right binary method), shown in Algorithm 1. It takes the binary repre-
sentation of the scalar k as an input and processes the bits from left to right. A
point doubling operation is performed at every iteration whereas point addition
is only performed if the bit value, ki, is 1.

Algorithm 1 Double-and-add

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 6= 0
Output: QQQ = kPPP

1: R0R0R0 ← PPP
2: for i = n− 2 downto 0 do
3: R0R0R0 ← 2R0R0R0

4: if (ki = 1) then R0R0R0 ← R0R0R0 +PPP

5: end for
6: return R0R0R0

The method has the advantage that it provides a very efficient point multi-
plication but suffers from that it may leak information about the secret scalar
k via physical side-channels [20, 24]. In Simple Power Analysis (SPA) attacks,
an adversary tries to recover the scalar k by measuring the power-consumption
traces during scalar multiplication. If a difference between the operations of point
addition and point doubling can be observed in the traces, then the scalar k is
revealed bit-by-bit.

In [4], Coron proposes a simple countermeasure that involves a dummy point
addition operation if the scalar bit is set to 0. The so-called double-and-add
always method actually prevents SPA attacks but becomes vulnerable to safe-
error attacks, as shown in [35]. A fault can be induced during the computation
and an adversary can check whether the final result is correct or not. If the
fault is injected during a dummy addition, the result is still correct and the
corresponding bit of the scalar is 0. If the result is incorrect, the scalar bit is 1.

Another scalar-multiplication method that is commonly used is known as the
Montgomery ladder [28] and is depicted in Algorithm 2. The method presents
several advantages for cryptographic applications.

First, the Montgomery ladder implicitly offers security against implemen-
tation attacks [16]. Since it performs the same curve operations in every loop
iteration, an attacker cannot distinguish individual bits of the secret scalar by
simply observing a side-channel trace and so prevents SPA-type attacks. Fur-
thermore, the Montgomery ladder has a very regular structure and does not use
dummy operations. This prevents fault-injection based safe-error attacks.



Algorithm 2 Montgomery ladder

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 6= 0
Output: QQQ = kPPP

1: R0R0R0 ← PPP ; R1R1R1 ← 2PPP
2: for i = n− 2 downto 0 do
3: b← ki; R1−bR1−bR1−b ← R1−bR1−bR1−b +RbRbRb

4: RbRbRb ← 2RbRbRb

5: end for
6: return R0R0R0

Second, group operations can be performed without the need of y-coordinates.
Montgomery originally applied the technique to special (Montgomery form) el-
liptic curves as a way to speed up the elliptic curve factoring method. The
technique was subsequently generalized to Weierstraß form curves [2, 7, 15, 14].

Let P1P1P1 = (x1, y1) and P2P2P2 = (x2, y2) be two points on the elliptic curve
E : y2 = x3 + ax + b and xD the x-coordinate of their difference DDD = P2P2P2 −P1P1P1.
Then the x-coordinate of the sum P1P1P1 +P2P2P2, say x3, is given by

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− xD . (4)

Alternatively, the x-coordinate of P1P1P1 + P2P2P2 can be obtained in a multiplicative
way as

x3 =
−4b(x1 + x2)(x1x2 − a)2

xD(x1 − x2)2
. (4’)

The x-coordinate of 2P2P2P2, say x4, can be expressed from the x-coordinate of
P2P2P2 as

x4 =
(x2

2 − a)2 − 8bx2
4(x23 + ax2 + b)

. (5)

It is worth noticing that the Montgomery ladder keeps invariant the difference
of the involved points throughout the entire scalar multiplication. Indeed, from
the description in Algorithm 2, it is easily seen that R1R1R1−R0R0R0 = (R1R1R1 +R0R0R0)− 2R0R0R0

when b = 0, and R1R1R1 − R0R0R0 = 2R1R1R1 − (R0R0R0 + R1R1R1) when b = 1. Hence, DDD :=
R1R1R1 −R0R0R0 = PPP . Consequently, R1R1R1 will contain the value of (k+ 1)PPP at the end of
the algorithm. When the calculation is performed using x-coordinates only, this
allows one to recover the y-coordinate of kPPP . Letting (x1, y1) the coordinates of
QQQ = kPPP , (xD, yD) the coordinates of PPP and x2 the x-coordinate of (k+ 1)PPP , one
has

y1 =
2b+ (a+ xDx1)(xD + x1)− x2(xD − x1)2

2yD
. (6)

This is useful for cryptographic schemes needing the y-coordinate of the resulting
point; for example, in the verification of an ECDSA digital signature [29].



4 New x-Coordinate Only Formulæ

This section presents new x-coordinate only formulæ for Weierstraß elliptic
curves. We first provide the formulæ for addition and doubling of points in the
co-Z coordinate representation. Second, we give formulæ for efficient differential
addition-and-doubling in the same coordinate representation. Third, we discuss
optimizations when applying dynamic ECC parameters and give appropriate
formulæ to recover the full coordinates of the output point.

Let P1P1P1 = (X1, Y1, Z) and P2P2P2 = (X2, Y2, Z) be two points on the Weierstraß
elliptic curve E : Y 2Z = X3 + aXZ2 + bZ3 in homogeneous† projective coordi-
nates that share the same Z-coordinate. Then, the x-coordinate of the addition
of the two points, x(P1P1P1 +P2P2P2) = (X3, Z3), can be evaluated as{

X3 = 2(X1 +X2)(X1X2 + aZ2) + 4bZ3 − xDZ(X1 −X2)2

Z3 = Z(X1 −X2)2
, (7)

where DDD = P2P2P2 − P1P1P1 = (xD, yD) is the difference of the points P1P1P1 and P2P2P2 in
affine coordinates. Note that the formula performs the point addition with
x-coordinates only, thus no Y -coordinate is used. The point addition needs
5M + 2S + 1Ma + 1M4b to get the resulting x-coordinate x(P1P1P1 +P2P2P2).

The x-coordinate of a point doubling operation, x(2P2P2P2) = (X4, Z4), needs
4M + 3S + 1Ma + 1M4b and can be evaluated as{

X4 = (X2
2 − aZ2)2 − 8bZ3X2

Z4 = Z[4X2(X2
2 + aZ2) + 4bZ3]

. (8)

Applying formulæ (7) and (8) to the Montgomery ladder needs three addi-
tional multiplications to project the resulting x-coordinates x(R0R0R0) = (X3, Z3)
and x(R1R1R1) = (X4, Z4) to a common Z-coordinate. An equivalent representation
for R0R0R0 and R1R1R1 can be obtained by evaluating

X ′1 = X3Z4 , X ′2 = X4Z3 , and Z ′ = Z3Z4 ,

resulting in R0R0R0
∼= (X ′1, Z

′) and R1R1R1
∼= (X ′2, Z

′) sharing the same Z-coordinate.
The total complexity for one Montgomery ladder loop iteration is therefore 12M+
5S + 2Ma + 2M4b. In the following, we show how to reduce the complexity for
differential addition-and-doubling to only 9M + 5S + 1Ma + 1M4b.

4.1 Differential Addition-And-Doubling

By combining the projective formulæ given by Eqs. (7) and (8) and class equiv-
alences to have the same Z-coordinate, we obtain

† Previous works considered Jacobian coordinates when applying co-Z arithmetic on
elliptic curves over fields of characteristic 6= 2, 3.




X ′1 = V [2(X1 +X2)(X1X2 + aZ2) + 4bZ3 − xDZU ]

X ′2 = U [(X2
2 − aZ2)2 − 8bZ3X2]

Z ′ = UV Z

, (9)

where U = (X1 −X2)2 and V = 4X2(X2
2 + aZ2) + 4bZ3. The points x(R0R0R0) =

(X1, Z) and x(R1R1R1) = (X2, Z) get added and doubled resulting in the points
x(R′0R

′
0R
′
0) = (X ′1, Z

′) and x(R′1R
′
1R
′
1) = (X ′2, Z

′). The formula reduces the complexity to
10M + 4S + 1Ma + 1M4b.

This can be further optimized by replacing the multiplication X1X2 involved
in the previous formula with the equivalent expression (X1

2 + X2
2 − (X1 −

X2)2)/2. The term can be multiplied with the leading factor 2 so that we finally
obtain

X ′1 = V [(X1 +X2)(X1
2 +X2

2 − U + 2aZ2) + 4bZ3 − xDZU ]

X ′2 = U [(X2
2 − aZ2)2 − 8bZ3X2]

Z ′ = UV Z

. (10)

This latter formula can be evaluated with 9M+ 5S+ 1Ma + 1M4b. Note that
the formula overwrites the input coordinates X1, X2, and Z with the output
variables X ′1, X ′2, and Z ′. This avoids additional memory allocations for the
output variables and avoids variable copying since the output variables serve as
input variables for the next Montgomery loop iteration. Furthermore, the result-
ing points x(R0R0R0) = (X ′1, Z

′) and x(R1R1R1) = (X ′2, Z
′) share the same Z-coordinate

and do not need any further updates. A detailed implementation is provided in
Algorithm 5 (Appendix A).

4.2 (X,Y, Z) Recovery

We now give the formula for the recovery of the full projective coordinates for
output pointQQQ = kPPP , from the x-coordinatesR0R0R0 = (X1, Z) andR1R1R1 = (X2, Z) in
co-Z representation available in memory at the end of the Montgomery ladder.
First, we transform Eq. (6) from affine to projective coordinates and set xi =
Xi/Z and yi = Yi/Z (i ∈ {1, 2}). Then, we can calculate the representation of
output point QQQ in the projective coordinates QQQ ∼= (X ′1, Y

′
1 , Z

′
1) with

X ′1 = DX1A

Y ′1 = 2[(CX1 + aA)(C +X1)−X2(C −X1)2] + 4bB

Z ′1 = DB

, (11)

where A = Z2, B = ZA, C = xDZ, D = 4yD. X1, X2, and Z are the coordi-
nates of the elliptic curve points after scalar multiplication and DDD = (xD, yD)
represents the invariant of the Montgomery ladder in affine coordinates (namely,
input point PPP ). The given formula needs 8M + 2S + 1Ma + 1M4b. The affine co-
ordinates of output point QQQ can then be calculated by one inversion and two
multiplications, i.e., QQQ = (x1, y1) = (X ′1 · Z ′1

−1
, Y ′1 · Z ′1

−1
). See Algorithm 7

(Appendix A) for a detailed implementation.



4.3 Optimizations for Dynamic ECC Parameters

If the curve parameters such as a, b are not fixed by the implementation and are
chosen dynamically, the formula given in Eq. (10) can be optimized. In this case,
the curve parameters have to be handled in RAM and their memory allocation
can therefore be re-used as working space as soon as they are not needed. The
following formulæ allows to save one register compared to the implementation
of Eq. (10) with a and b permanently occupying a full register in RAM. By
initializing three additional coordinates Ta = aZ2, Tb = 4bZ3, and TD = xDZ,
we can evaluate

T ′D = TDW

T ′a = TaW
2

T ′b = TbW
3

X ′1 = V [(X1 +X2)(X1
2 +X2

2 − U + 2Ta) + Tb]− T ′D
X ′2 = U [(X2

2 − Ta)2 − 2X2Tb]

(12)

to perform a differential addition-and-doubling operation, where U = (X1−X2)2,
V = 4X2(X2

2 +Ta) +Tb, and W = UV . The given formula reduces the memory
requirements by one working register and increases the performance by 1M if
the relation Ma = Mb = 1M is given (however, in practice, one has usually the
relation Ma +Mb = 1M; see § 6.2) . Note that the formula does not involve either
a, b, or xD nor an explicit Z-coordinate throughout the scalar multiplication.
See Algorithm 6 (Appendix A) for a detailed implementation.

The full coordinates (X ′1, Y
′
1 , Z

′
1) can be recovered with 10M + 3S by evalu-

ating
X ′1 = 4yDxDTD

2X1

Y ′1 = xD
3[Tb + 2(TDX1 + Ta)(X1 + TD)− 2X2(X1 − TD)2]

Z ′1 = 4yDTD
3

. (13)

See Algorithm 8 (Appendix A) for a detailed implementation.

5 In-Place vs. Out-of-Place Formulæ

Most descriptions of the elliptic-curve operations presented in the literature have
claims of memory requirements and performances that assume that the finite-
field operations can be performed in-place. That means that one source operand
of the operation may be overwritten by the resulting value during the execution,
e.g.

R1 ← R1 ◦R2 ,

where R1 ∈ Fp and R2 ∈ Fp are variables that store the source operands and
R1 is overwritten by the resulting value after execution of an operation ◦. In



contrast, operations that do not overwrite the input operands are referred to as
out-of-place operations, e.g.

R3 ← R1 ◦R2 ,

where R3 ∈ Fp is an additional variable that stores the result of the operation.
In general, there exist several ways to implement modular operations in soft-

ware and hardware. Most implementations use multi-precision arithmetic to pro-
cess the large integer operands. That means that each operand is represented as a
multiple-word data structure, i.e. a = (at−1, . . . , a1, a0) and b = (bt−1, . . . , b1, b0),
where t denotes the number of words. A 160-bit addition operation, for instance,
that runs on a 16-bit processor, performs therefore ten additions by loading the
input operands from memory, adding the two operands, and storing the result
back to the memory. A subtraction is done in the same way, performing ma-
chine word subtractions instead of additions. However, during the computation
both operations process each word of the operands sequentially and can thus
perform the operation in-place at no cost in terms of memory or computational
efficiency [11].

In contrast, modular multiplication (and squaring) can be implemented in
several ways. Basically, we can distinguish between separated and integrated
modular multiplication [19, 18]. Separated modular multiplications perform the
multiplication first and apply the reduction afterwards. In this approach, the
result of the multiplication is stored in a temporary variable Rm which is then
reduced in a separated step, e.g.

Rm ← R1 ×R2,

R1 ← Rm (mod p).

This approach needs additional memory to store the temporary variable Rm ∈
[0, 22Wt), where W denotes the number of bits of a word (i.e. typically 8, 16, 32,
or 64 bits).

The integrated (or interleaved) modular multiplication approach alternates
between multiplication and reduction. There, partial products get reduced dur-
ing the multiplication which avoids storing the double-sized result Rm and thus
reduces the memory requirements significantly to the size of about the modu-
lus p ∈ [0, 2Wt) [1, 33, 34, 19, 12, 21]. However, for both multiplication types, the
input operands cannot be overwritten with the resulting words because they
are used not only once but multiple times throughout the algorithm. Therefore,
implementations that allow in-place multiplications (and squarings) may need
either an extra buffer to store the intermediate result 2Wt ≤ Rm < 22Wt or save
the input operand to be overwritten during the computation. Formulæ for point
operations in elliptic curves that involve in-place operations are thus very likely
to require more memory in practice than claimed.

In this work, we propose out-of-place formulæ that use different source and
destination variables to perform the modular multiplication and squaring op-
erations. This guarantees that no additional memory is needed to perform the
computation neither for software nor hardware implementations and that our
formulæ will therefore meet our claims in all contexts.



6 Discussion

6.1 Security Analysis

The resistance to side-channel attacks and fault attacks is essential for the imple-
mentation of cryptographic applications in embedded device. The given formulæ
allow the use of traditional countermeasures against such attacks without disad-
vantages. As described in Section 3, the Montgomery ladder is well suited to the
implementation of the scalar-multiplication method since it is resistant against
SPA attacks [20, 24] as well as safe-error attacks [35].

In addition, there exist several proposals to protect the Montgomery lad-
der against statistical attacks such as Differential Power Analysis (DPA) [20,
24]. One cheap but effective countermeasure against these attacks is the use of
Randomized Projective Coordinates (RPC) as proposed by Coron [4]. In our
context, this countermeasure can be implemented by randomizing the interme-
diate points of the Montgomery ladder since they are represented in projective-
coordinate representation as seen in Section 4. This can be done in Algorithm 2
at the cost of only two multiplications by randomizing the initial coordinates of
the points R0R0R0 and R1R1R1 which are represented by the triplet {X1, X2, Z} such that
x(R0R0R0) = (X1, Z) and x(R1R1R1) = (X2, Z). Then, given a random value λ, the point
x(PPP ) = (xP , 1) is randomized to x(PPP ′) = (λxP , λ) for the initialization of x(R0R0R0)
and x(R1R1R1) as follows:

x(R1R1R1)← (λxP , λ) = x(PPP ′)

x(R1R1R1)← doubling(R1R1R1) = x(2PPP ′)

x(R0R0R0)← (ZxP , Z) = x(PPP ′)

. (14)

This effectively randomizes every intermediate value during scalar multipli-
cation and makes therefore DPA attacks ineffective. Note that the doubling can
computed using the differential algorithms 4, 5, and 6 to save the need for a
dedicated function.

In order to thwart fault injections during the scalar multiplication [32, 31] a
countermeasure that checks the resulting point can be applied. Checking that
x3 +ax+ b is a square may seem conceivable, unfortunately that may not detect
if the point belongs to the twist curve instead of the original curve and would
leave the implementation vulnerable to attacks such as the one introduced by
Fouque et al. [8]. Another check consists in verifying that the coordinates of
the resulting point satisfy the curve equation, in which case the recovery of
the y-coordinate is required. However that can be done in an efficient way with
projective coordinates i.e. Z(Y 2−bZ2) = X(X2+aZ2) [5]. This countermeasure
effectively protects against fault attacks on the Montgomery ladder even when
implemented with x-coordinate only formulæ [8].

Algorithm 3 shows the proposed Montgomery ladder in projective co-Z co-
ordinate system using RPC [4] and Point-Validity Check [5]. AddDblCoZ denotes
the implemented differential addition-and-doubling operation using Algorithms
4, 5, or 6. RecoverFullCoordinatesCoZ recovers the coordinates using Algo-
rithm 7 or 8.



Algorithm 3 Montgomery ladder in projective co-Z coordinate system using
RPC [4] and Point-Validity Check [5].

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 6= 0
Output: QQQ = kPPP

1: {X1, X2, Z} ← AddDblCoZ({0, λxP , λ})
2: X1 ← xP · Z
3: for i = n− 2 downto 0 do
4: b← ki;
5: {X2−b, X1+b, Z} ← AddDblCoZ({X2−b, X1+b, Z})
6: end for
7: {X,Y, Z} ← RecoverFullCoordinatesCoZ({X1, X2, Z})
8: Z(Y 2 − bZ2)

?
= X(X2 + aZ2)

9: return {X,Y, Z}

6.2 Performance Analysis

We now compare our formulæ with existing differential addition-and-doubling
formulæ. Comparing one formula with another is not straightforward because the
complexity ratio of the field-arithmetic operations involved may vary according
to the underlying implementation as well as the usage context. Hence we provide
the global complexity of each algorithm along with figures corresponding to some
assumptions that are made based on on-the-field experience and previous works.

Thus, we first adopt the common assumption that the squaring operation is
faster than a multiplication with the weighting 1S = 0.8M [11, 6]. The cost of
additions and subtractions are usually neglected when evaluating the complexity
of the formulæ. However, according to several previous works [23, 26, 9] it may
be relevant to take these operations into account since in practice they have re-
ported ratios from 1add = 0.1M up to 1add = 0.3M. Hence, in the following we
will consider both cases, by first considering additions negligible and then the
worst case where 1add = 0.3M. Besides, a special case can also be made for the
multiplications involving the curve parameters and especially the parameter a
because several standardized curves have a set to −3. In any case, this assump-
tion can be applied without loss of generality because a curve isomorphism can
be used to reduce a to a small relative integer [13, §§A.9.5 and A.10.4] (see also
[3]). Subsequently, we will assume that a multiplication with a takes 2 additions,
i.e. 1Ma = 2add. Rescaling a curve to reduce the value of a also modifies the
value b in a way that it is unlikely in the general case to have both a and b
small. Therefore a multiplication with b (or any fixed pre-computed multiple
e.g. 4b denoted M4b) is considered as a regular modular multiplication of cost
Mb = 1M.

In the following, we compare different low-memory scalar multiplication for-
mulæ first sorted by performances in Table 1 and then sorted by memory re-
quirements in Table 2.

Table 1 shows the efficiency of the formulæ we proposed in Section 4. Al-
gorithm 5 is more efficient than any previous works found in literature since



Table 1. Complexity of scalar multiplications per bit of scalar.

Method Costs? M/bit?? M/bit? ? ?

Algorithm 6 10M + 5S + 13add 14 17.9
Algorithm5 9M + 5S + 1Ma + 1M4b + 14add 14 18.8
Izu et al. [14] 10M + 4S + 2Ma + 1Mb + 18add 14.2 20.8
Goundar et al. [10] 8M + 7S + 3Ma + 1Mb + 18add 14.6 21.8
Algorithm 4 11M + 4S + 1Ma + 1M4b + 14add 15.2 20.0
Fischer et al. [7] 10M + 5S + 2Ma + 2Mb + 14add 16 21.4

? The explicit formulæ are given in Appendix A.
?? Mb = 1M ; S = 0.8M ; 1Ma ' 0 ; 1add ' 0 (negligible)

? ? ? Mb = 1M ; S = 0.8M ; 1Ma = 2add ; 1add = 0.3M

1S ≥ 0.5M [26, §§ 14.18]. In practice, Algorithm 6 is also more efficient because
rescaling general curves implies at best 1Ma + 1Mb ≥ 1M. The performance im-
provement is significant (up to 14 % less multiplications per bit) when adopting
the usual assumption that 1S ≥ 0.8M (cf [11, 6]) and 1Mb = 1M. One can also re-
mark that the benefits of our approach increases when the squaring is performed
using the multiplication instead of a dedicated implementation (for program or
hardware saving) as well as when the secondary operations such as additions
and subtractions are not negligible (as observed in practice).

Table 2 lists the memory requirements of the scalar multiplication methods.
For constrained devices where the elliptic-curve parameters xD, a, b or 4b are
hard-coded or stored in read-only memory, Algorithm 4 provides the lowest mem-
ory requirements. It allows to implement the scalar multiplication with only 7
working registers combined with the memory gain offered by the implementation
of out-of-place field operations as described in Section 5.

In a context where the curve parameters cannot be set during the design-time
of the device or if they can not be processed directly from the read-only memory
as it is in the case with most cryptographic accelerators, Algorithm 6 becomes

Table 2. Memory requirements of scalar multiplications.

Method
Working In-place?

Constants Total
registers memory

Algorithm 4 7 reg. - {xD, a, 4b} 10 reg.
Izu et al. [14] 7 reg. +1 reg. {xD, a, b} 11 reg.
Goundar et al. [10] 7 reg. +1 reg. {xD, a, b} 11 reg.

Algorithm 5 8 reg. - {xD, a, 4b} 11 reg.
Fischer et al. [7] 8 reg. +1 reg. {xD, a, 4b} 12 reg.

Algorithm 6 10 reg. - - 10 reg.

? In-place operations require additional memory to perform multiple-precision arith-
metic operations (see Section 5).



equivalent in terms of memory requirement to Algorithm 4 while being faster as
shown in Table 1.

7 Conclusion

In this paper, we presented new formulæ for fast and memory-wise scalar multi-
plication on elliptic curves over prime fields. The proposed formulæ use out-of-
place operations, namely the source and destination variables of finite-field multi-
plications are always different. This guarantees that neither additional memory
is needed nor additional operations have to be executed to perform multiple-
precision arithmetic operations in both software or hardware implementations.
Furthermore, the given formulæ outperform existing solutions by using a co-Z
coordinate representation. The formulæ can be applied on general elliptic curves
and allow the integration of conventional countermeasures against implementa-
tion attacks. They can be efficiently applied in low-resource implementations of
RFIDs, smart cards, and other embedded systems.
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A Appendix

In the following, the explicit formulæ for differential addition-and-doubling and
full projective coordinate recovery in co-Z coordinates are given. Algorithm 4
gives the formulæ for differential addition-and-doubling using 11M+4S+14add+
1Ma + 1M4b and 7 + {xD, a, 4b} registers. Algorithm 5 show the formulæ using
9M+5S+14add+1Ma+1M4b and 8+{xD, a, 4b} registers. Algorithm 6 gives the
formulae using 10M + 5S + 13add and 10 registers (without involving curve pa-
rameters). The recovery of the full projective coordinates is given in Algorithm 7
which uses 8M + 2S + 8add + 1Ma + 1M4b and 7 + {xD, yD, a, 4b} registers.
All given formulæ provide the out-of-place property so that input operands are
not overwritten by output operands of squaring and multiplication operations.
Furthermore, the elliptic curve parameter b is always used in a quadruple rep-
resentation so that it can be pre-computed and pre-stored as 4b. In addition,
all formulae update the input variables with the resulting values using the same
memory location. This avoids memory copies or pointer manipulations in hard-
ware or software implementations. Finite field operations are denoted by × for
multiplication, ·2 for squaring, + for addition, and − for subtraction.



Algorithm 4 Out-of-place differential addition-and-doubling in projective co-Z
coordinate system using 11M + 4S + 14add + 1Ma + 1M4b and 7 + {xD, a, 4b}
registers.

Require: X1, X2, Z, xD, a, 4b
Ensure: X1, X2, Z

1:

1. R1 ← X1 ×X2

2. R3 ← Z2

3. R4 ← Z ×R3

4. R2 ← a×R3

5. R1 ← R1 +R2

6. X1 ← X1 +X2

7. R3 ← X1 ×R1

8. X1 ← X1 −X2

9. X1 ← X1 −X2

10. R1 ← 4b×R4

11. R4 ← X1
2

12. X1 ← R4 × Z
13. R3 ← R3 +R3

14. R3 ← R3 +R1

15. Z ← X2 ×R4

16. R4 ← R1 ×X2

17. R1 ← X2
2

18. R2 ← R1 +R2

19. R1 ← R1 +R1

20. X2 ← xD ×X1

21. R3 ← R3 −X2

22. X2 ← R1 ×R2

23. X2 ← X2 +X2

24. R2 ← R2 −R1

25. R1 ← R4 +R4

26. R4 ← X2 +R4

27. X2 ← R2
2

28. R1 ← X2 −R1

29. X2 ← R1 × Z
30. Z ← X1 ×R4

31. X1 ← R3 ×R4

2: return (X1, X2, Z)

Algorithm 5 Out-of-place differential addition-and-doubling in projective co-Z
coordinate system using 9M + 5S + 14add + 1Ma + 1M4b and 8 + {xD, a, 4b}
registers.

Require: X1, X2, Z, xD, a, 4b
Ensure: X1, X2, Z

1:

1. R2 ← Z2

2. R3 ← a×R2

3. R1 ← Z ×R2

4. R2 ← 4b×R1

5. R1 ← X2
2

6. R5 ← R1 −R3

7. R4 ← R5
2

8. R1 ← R1 +R3

9. R5 ← X2 ×R1

10. R5 ← R5 +R5

11. R5 ← R5 +R5

12. R5 ← R5 +R2

13. R1 ← R1 +R3

14. R3 ← X1
2

15. R1 ← R1 +R3

16. X1 ← X1 −X2

17. X2 ← X2 +X2

18. R3 ← X2 ×R2

19. R4 ← R4 −R3

20. R3 ← X1
2

21. R1 ← R1 −R3

22. X1 ← X1 +X2

23. X2 ← X1 ×R1

24. X2 ← X2 +R2

25. R2 ← Z ×R3

26. Z ← xD ×R2

27. X2 ← X2 − Z
28. X1 ← R5 ×X2

29. X2 ← R3 ×R4

30. Z ← R2 ×R5

2: return (X1, X2, Z)



Algorithm 6 Out-of-place differential addition-and-doubling in projective co-Z
coordinate system using 10M + 5S + 13add and 10 registers.

Require: X1, X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3

Ensure: X1, X2, TD, Ta, Tb

1:

1. R2 ← X1 −X2

2. R1 ← R2
2

3. R2 ← X2
2

4. R3 ← R2 − Ta

5. R4 ← R2
3

6. R5 ← X2 +X2

7. R3 ← R5 × Tb

8. R4 ← R4 −R3

9. R5 ← R5 +R5

10. R2 ← R2 + Ta

11. R3 ← R5 ×R2

12. R3 ← R3 + Tb

13. R5 ← X1 +X2

14. R2 ← R2 + Ta

15. R2 ← R2 −R1

16. X2 ← X1
2

17. R2 ← R2 +X2

18. X2 ← R5 ×R2

19. X2 ← X2 + Tb

20. X1 ← R3 ×X2

21. X ′2 ← R1 ×R4

22. R2 ← R1 ×R3

23. R3 ← R2 × Tb

24. R4 ← R2
2

25. R1 ← TD ×R2

26. R2 ← Ta ×R4

27. Tb ← R3 ×R4

28. X1 ← X1 −R1

29. TD ← R1

30. Ta ← R2

2: return (X1, X2, TD, Ta, Tb)

Algorithm 7 Out-of-place (X,Y, Z)-recovery in projective co-Z coordinate sys-
tem using 8M + 2S + 8add + 1Ma + 1M4b and 7 + {xD, yD, a, 4b} registers.

Require: X1, X2, Z, xD, yD, a, 4b
Ensure: X1, X2, Z

1:

1. R1 ← xD × Z
2. R2 ← X1 −R1

3. R3 ← R2
2

4. R4 ← R3 ×X2

5. R2 ← R1 ×X1

6. R1 ← X1 +R1

7. X2 ← Z2

8. R3 ← a×X2

9. R2 ← R2 +R3

10. R3 ← R2 ×R1

11. R3 ← R3 −R4

12. R3 ← R3 +R3

13. R1 ← yD + yD
14. R1 ← R1 +R1

15. R2 ← R1 ×X1

16. X1 ← R2 ×X2

17. R2 ← X2 × Z
18. Z ← R2 ×R1

19. R4 ← 4b×R2

20. X2 ← R4 +R3

2: return (X1, X2, Z)

Algorithm 8 Out-of-place (X,Y, Z)-recovery in projective co-Z coordinate sys-
tem using 10M + 3S + 8add and 9 + {xD, yD, a, 4b} registers.

Require: X1, X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3, xD, yD
Ensure: X1, X2, Z

1:

1. R1 ← TD ×X1

2. R2 ← R1 + Ta

3. R3 ← X1 + TD

4. R4 ← R2 ×R3

5. R3 ← X1 − TD

6. R2 ← R2
3

7. R3 ← R2 ×X2

8. R4 ← R4 −R3
9. R4 ← R4 +R4

10. R4 ← R4 + Tb

11. R2 ← T 2
D

12. R3 ← X1 ×R2

13. R1 ← xD ×R3

14. R3 ← yD + yD

15. R3 ← R3 +R3

16. X1 ← R3 ×R1

17. R1 ← R2 × TD

18. Z ← R3 ×R1

19. R2 ← x2D
20. R3 ← R2 × xD
21. X2 ← R3 ×R4

2: return (X1, X2, Z)


