
Published in M.D. Ryan, B. Smyth, and G. Wang, Eds, Information Security Practice and Ex-
perience (ISPEC 2012), vol. 7232 of Lecture Notes in Computer Science, pp. 369-380, Springer,
2012

Partial Key Exposure on RSA with Private
Exponents Larger than N

Marc Joye1 and Tancrède Lepoint2,3,?

1 Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

marc.joye@technicolor.com
2 CryptoExperts

41 boulevard des Capucines, 75002, Paris, France
3 Laboratoire d’Informatique de l’École Normale Supérieure

45 rue d’Ulm, 75230 Paris Cedex 05, France
tancrede.lepoint@cryptoexperts.com

Abstract. In 1998, Boneh, Durfee and Frankel described several attacks
against RSA enabling an attacker given a fraction of the bits of the
private exponent d to recover all of d. These attacks were later improved
and extended in various ways. They however always consider that the
private exponent d is smaller than the RSA modulus N . When it comes
to implementation, d can be enlarged to a value larger than N so as
to improve the performance (by lowering its Hamming weight) or to
increase the security (by preventing certain side-channel attacks). This
paper studies this extended setting and quantifies the number of bits
of d required to mount practical partial key exposure attacks. Both the
cases of known most significant bits (MSBs) and least significant bits
(LSBs) are analyzed. Our results are based on Coppersmith’s heuristic
methods and validated by practical experiments run through the SAGE
computer-algebra system.

Keywords: RSA cryptosystem, cryptanalysis, key exposure, Copper-
smith’s methods, lattice reduction.

1 Introduction

For efficiency reasons, it might be tempting to select a small RSA private expo-
nent d. In 1990, Wiener [30] showed that this results in an insecure system when
d < N0.25, where N denotes the RSA modulus. His attack made use of the con-
tinued fractions method. The bound was subsequently improved to d < N0.292

by Boneh and Durfee [3] (see also [14, Section 3]) from powerful LLL-based
techniques due to Coppersmith [8].

A related problem is that of partial key exposure: What is the fraction of
the private exponent d that has to be made available to an attacker in order
to break the system. This question was posed by Boneh, Durfee and Frankel [4]

? This work was done while the author was with Technicolor.

in 1998. They present several attacks where the attacker gains knowledge of
most significant bits of d or of least significant bits of d. (Observe that Wiener’s
attack corresponds to a partial key exposure where the most significant bits are
known to be zero.) Further partial key exposure attacks are presented by Blömer
and May in [2] for larger values of public exponent e. The attacks in [4] require
e < N1/2. For attacks that work up to full-size exponents e, we refer to the paper
of Ernst, Jochemsz, May and de Weger [12].

One may argue that partial key exposure attacks are unimportant. If an at-
tacker is able to recover some bits of d then it should likewise be able to recover
the entire private key d. While this may hold true in theory, in practice things are
not so easy. Revealing some bits of d can be a lengthy and costly process. Partial
key exposure attacks then facilitate the recovery of the entire private key. This
especially applies to RSA implementations since it is likely that precautions were
taken to prevent an adversary to obtain the private key d. Examples of imple-
mentation attacks include side-channel attacks [20, 18, 19]. Such attacks exploit
differences in running times, power consumption traces, or other side channels
resulting from the execution of the cryptographic algorithm. Yet another use case
of partial key exposure is in covert communication channels (a.k.a. subliminal
channels) [27, 28, 31]. A covert channel enables users to exchange secret informa-
tion (e.g., an RSA private key) through messages that appear to be innocuous.
Partial key exposure then reduces the number of exchanged messages.

All partial key exposure results on RSA presented so far have in common that
the private exponent d is defined as an element in Z∗φ(N), where φ(N) denotes
Euler’s totient function of N — namely, the order of the multiplicative group
of integers modulo N . In a number of implementations, a multiple of φ(N) is
added to d prior to the exponentiation. In more detail, the RSA exponentiation
xd mod N is carried out as xd+kφ(N) mod N for some k > 0, that is, with an
exponent whose size is at least that of N . There are mainly two reasons to do so.
One of them is to offer better resistance against implementation attacks like side-
channel attacks (e.g., [9, § 5.1]). The other reason is efficiency. An appropriate
choice of k can lower the Hamming weight of the exponent and reduce the total
number of multiplications, leading to an expected performance improvement of
up to 9.3% [5].

This paper deals with private exponents d that are larger than N (or more ex-
actly than φ(N)). We follow the heuristic strategy put forward by Jochemsz and
May [16, 17] for solving multivariate polynomials with small integer or modular
roots. The main advantage resides in its generality. The method is nevertheless
heuristic in the sense that it is not guaranteed to succeed. We therefore ran many
experiments with different parameter sets and none of them failed. Two practical
cases are considered. The first case assumes that the attacker knows the most
significant bits (MSBs) of d. Informally, we then show that if the public/private
exponents verify (e, d) ∼ (Nα, Nβ) with β > 1 the fraction of d that is sufficient
to recover it entirely is given by

1− α
β

when 1 < α+ β 6 3
2

2β − α+ 2
√

(α+ β)
(
α+ β − 3

2

)
3β

when 3
2 6 α+ β < 2

.

In some scenarios, the least significant bits (LSBs) can be easier to obtain; for
example, when the underlying exponentiation algorithm processes the bits of d
from the right to the left. Informally, with the above notation, we then show
that the fraction of d that is sufficient to recover it entirely is given by

(6β − 5) + 2
√

6α+ (6β − 5)

6β
.

The rest of this paper is organized as follows. In the next section, we introduce
some useful background on lattice basis reduction. We also sketch the strategy
of Jochemsz and May. We apply it to the cases of known MSBs in Section 3
and known LSBs in Section 4. Section 5 provides various data obtained through
numerical experiments. Finally, we conclude in Section 6 and discuss some open
issues for further research.

2 LLL and Multivariate Polynomials

2.1 Lattices

A lattice is a discrete additive subgroup of Rn. For any integer lattice L 6= {0},
there exist w 6 n linearly independent vectors b1, . . . , bw over R such that L =
b1Z⊕· · ·⊕bwZ. This set of vectors is called a basis of the lattice. A lattice can be
so represented by its basis matrix B; i.e., the matrix of the bi’s in the canonical

basis of Rn. The determinant of a lattice is defined as det(L) = (det(BBt))
1
2 .

When the lattice is full-rank (w = n), the formula simplifies to det(L) = |detB|.
The determinant of a lattice is well-defined since it is independent of the choice
of the basis: lattice bases are obtained one from the others through a unimodular
transformation (i.e., a multiplication by a matrix with determinant ±1).

Among all the bases of a lattice L, some are ‘better’ than others. The goal of
lattice reduction is to shorten the basis vectors and thus, since the determinant
is invariant, to make them more orthogonal. The LLL algorithm, named after
Lenstra, Lenstra and Lovász [21], produces in polynomial time a set of reduced
basis vectors. The following lemma, as presented in [22], gives bounds on LLL-
reduced basis vectors.

Lemma 1 (LLL). Let L be a lattice of dimension w. In polynomial time, the
LLL algorithm outputs reduced basis vectors vi, 1 6 i 6 w, satisfying

‖v1‖ 6 ‖v2‖ 6 · · · 6 ‖vi‖ 6 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

2.2 Strategy for finding small roots of multivariate polynomials

In [6–8], Coppersmith presents rigorous methods based on LLL to find small
roots of univariate modular polynomials or of bivariate integer polynomials. The
methods can be extended to polynomials in more variables, but only heuristically.

The methods for finding small roots of a polynomial f mainly depend on
the shape of its Newton polytope (in others words, of the monomials that ap-
pear in f). In [16], Jochemsz and May presents a heuristic strategy that applies
to any multivariate polynomial with either modular or integer roots, based on
Howgrave-Graham [15] lemma for the univariate case, and the improvements of
Coron [10, 11]. We briefly review hereafter their root-finding strategy.

For the sake of illustration, consider without loss of generality a trivariate
polynomial f(x, y, z) over the integers. Let (x0, y0, z0) be a (small) root of f ,
and let (X,Y, Z) be a upper bound of this root; i.e., |x0| < X, |y0| < Y and
|z0| < Z. Define W = ‖f(xX, yY, zZ)‖∞ the maximal coefficient (in absolute
value) of f(xX, yY, zZ). A basis B of a lattice L is defined via the so-called shift
polynomials xiyjzkf(x, y, z) (resp. xiyjzk) for {i, j, k} determined by a set S
(resp. M \ S) which depends on the monomials of f . The set M then consists
of all the monomials that appear in the shift polynomials xiyjzkf(x, y, z). LLL
reduction algorithm is then performed on B in order to reduce the lattice L.
From a result of [16], provided that

XsxY syZsz < W s , where


sx =

∑
xiyjzk∈M\S i+ (m− 1)

sy =
∑
xiyjzk∈M\S j + (m− 1)

sz =
∑
xiyjzk∈M\S k + (m− 1)

and s = |S| − 1 ,

the first vectors, say f0 and f1, of the reduced basis produced by LLL provide
two polynomials with root (x0, y0, z0) over the integers. The common roots of
{f, f0, f1} are revealed under the assumption that two variables can be elimi-
nated from the system {f = 0, f0 = 0, f1 = 0}. This can be done through the
evaluation of resultants or of Gröbner bases.

Again, it is worth remembering that the strategy is heuristic. It is assumed
that the aforementioned use of resultants produces a non-zero univariate poly-
nomial, for which finding integer roots is easy. So, in our example, f0 and f1
need to be algebraically independent. More generally, the following assumption
is supposed to hold true for n-variate polynomials, n > 3.

Assumption 1. The resultant computations for the polynomials fi yield non-
zero polynomials.

This heuristic assumption has proven to be useful in many attacks (e.g., [4, 2,
10, 12, 16, 11, 17, 25, 24]).

3 Key Recovery from Known MSBs

Most key recovery attacks on RSA cryptosystem use a similar technique. The
goal is to derive, from an RSA equation, a multivariate polynomial in some of
the unknowns of RSA, like p, q, d or φ(N).

Let N = pq be an RSA modulus where p and q are two equal-size (balanced)
primes. The public exponent is denoted e and the corresponding private exponent

is d = e−1 mod φ(N). In this section, we assume that the attacker succeeded in
getting the most significant bits of d∗ = d + `φ(N) for some unknown integer
` > 0. We write

d∗ = d̃+ d0

where d̃ is a known approximation for d∗ and d0 is the value to be found. The
upper bound on d0 is defined as d0 6 Nδ. The next theorem states how large δ
can be in order to recover d0 (and thus the entire private key d∗). Note that the
knowledge of d∗ yields a non-zero multiple of φ(N) as ed∗ − 1 and consequently
the two secret factors of N [23].

Theorem 1. With the previous notations, suppose that e ∼ Nα and d∗ ∼ Nβ.
Then under Assumption 1 and up to a small error factor ε, there exists, for suf-
ficiently large N , a polynomial-time algorithm that computes all of d∗, provided
that

δ 6

{
α+ β − 1− ε for 1 < α+ β < 3

2
α+β−

√
4(α+β)2−6(α+β)

3 − ε for 3
2 6 α+ β < 2

.

The rest of this section will be devoted to the proof of Theorem 1. Notice
also that it leads to the following result:

Corollary 1. Using the notation of Theorem 1, recovering a fraction of d∗ larger
than 

1−α
β when 1 < α+ β 6 3

2

2β−α+2

√
(α+β)

(
α+β− 3

2

)
3β when 3

2 6 α+ β < 2

.

is sufficient to recover the entire private exponent d∗ in polynomial time.

A graphical interpretation of this corollary, representing the fraction of d∗

required to recover the entire exponent d∗ in polynomial time, is depicted in
Fig. 1.

Proof (of Corollary 1). This is a immediate consequence of Theorem 1 since the
fraction of d∗ corresponding to the unknown d0 is given by 1− δ

β . ut

3.1 Preliminaries

Since ed ≡ 1 (mod φ(N)) and d∗ = d+ `φ(N), we can write ed∗ = 1 + k∗φ(N)
for some integer k∗, or equivalently,

ed̃+ ed0 = 1 + (k̃ + k0)(N − (p+ q − 1)) (1)

with k̃ =
⌊
ed̃−1
N+1

⌋
and k̃ = k∗ − k0. Moreover, since p and q are assumed to be

balanced, we have p+ q 6 3
√
N . Hence, as shown in [2], it follows that

|k0| = |k∗ − k̃| 6

∣∣∣∣∣ed∗ − 1

φ(N)
− ed̃− 1

N + 1

∣∣∣∣∣ 6 e

φ(N)

(
|d0|+ 3N−

1
2 d̃
)
.

1

0
1 2

2
3

3
2

β

fraction of d∗

that is sufficient

(a) e = 216 + 1 ∼ N0

1

0
1 7

4

5
8

5
4

β

fraction of d∗

that is sufficient

(b) e ∼ N1/4

1

0
1 3

2

1
2

β

fraction of d∗

that is sufficient

(c) e ∼ N1/2

Fig. 1. Graphical representations of the results of Corollary 1

We define δ such that |d0| 6 Nδ. Assuming that δ 6 β − 1
2 , the conditions

e ∼ Nα, φ(N) ∼ N , |d0| 6 Nδ, d̃ ∼ Nβ immediately yield, up to some small
error factor ε, the bound

|k0| 6 Nα−1+max(δ,− 1
2+β) = Nα+β− 3

2 . (2)

3.2 Trivariate approach: β > 3/2 − α

Equation (1) yields the trivariate polynomial

f(x, y, z) = (ed̃− 1− k̃N) + ex− yN + k̃z + yz ,

of which (x0, y0, z0) = (d0, k0, p + q − 1) is a root. Furthermore, up to a small
error factor ε, we have the upper bounds

|d0| 6 X = Nδ , |k0| 6 Y = Nα+β− 3
2 , and |p+ q − 1| 6 Z = N

1
2 .

We now apply the strategy of Jochemsz and May [16]. The goal is to max-
imize δ with respect to β, when α is a fixed value. Define two integers m and
t. As sketched in § 2.2, the set S describing the monomials used for the shift
polynomials contains the monomials of fm−1, and the set M is defined as the
set of monomials of xiyjzk f(x, y, z) with xiyjzk ∈ S. Since Y is much smaller
than X and Z for α+β < 3/2 + δ (a posteriori we shall see that it was the good
choice to make), we use extra-shifts on y. Therefore, we get

xiyjzk ∈ S ⇐⇒


i = 0, . . . ,m− 1

j = 0, . . . ,m− 1− i+ t

k = 0, . . . ,m− 1− i
and

xiyjzk ∈M ⇐⇒


i = 0, . . . ,m

j = 0, . . . ,m− i+ t

k = 0, . . . ,m− i
.

The parameter t has to be optimized with respect to m in order to maximize δ.

From the discussion in § 2.2, we know that two polynomials sharing the root
(x0, y0, z0) can be computed thanks to LLL algorithm as long as XsxY syZsz <
W s with the notation of § 2.2. First notice that, up to a small error factor ε, we
have W = Nα+β− 1

2 . Now defining τ such that t = τm, we obtain
s =

(
1
3 + 1

2τ
)
m3 + o(m3)

sx =
(
1
3 + 1

2τ
)
m3 + o(m3)

sy =
(
1
2 + τ + 1

2τ
2
)
m3 + o(m3)

sz =
(
1
2 + 1

2τ
)
m3 + o(m3)

.

In order to get the asymptotic bound, we let m grow to infinity and all the
lower-order terms contribute to some error factor ε. The latter equation then
becomes X2+3τY 3+6τ+3τ2

Z3+3τ < W 2+3τ . If we substitute the values for the
upper bounds, we get:

δ(2 + 3τ) +
(
α+ β − 3

2

)
(3 + 6τ + 3τ2) + 1

2 (3 + 3τ) <
(
α+ β − 1

2

)
(2 + 3τ) .

The optimal value for τ is given by
1−α2−

β
2−

δ
2

α+β− 3
2

(valid until α+β+ δ 6 2) and

leads to

δ <
α+ β −

√
4(α+ β)2 − 6(α+ β)

3
− ε .

3.3 Bivariate approach: β < 3/2 − α

Analogously to what was done in the previous section, a lattice reduction leads
directly to the bound δ < α+ β − 1− ε.4 However, this latter bound can simply
be obtained with a straightforward argument. As k∗ ∼ Nα+β−1, we can consider
the bivariate polynomial

f(x, y) = (ed̃− 1− k∗N) + ex+ k∗y

modulo k∗. Indeed, when δ < α+ β − 1 holds, we immediately obtain the value

of d0 over the integers as d0 = x0 mod k∗ = 1−ed̃
e mod k∗.

4 Key Recovery from Known LSBs

We now assume that the attacker succeeded to recover the least significant bits
(LSBs) of d∗ = d + `φ(N). More generally, we write d∗ = dl + d0M , where dl
is known to the attacker, together with its higher bound M = Nµ, but d0 is
unknown. (In the particular case of known LSBs, M is a power of two.) We
prove the following theorem:

4 Due to the shape of the bivariate polynomial (linear in each variable), no extra-shift
is necessary.

1

0
1 15

8

1
2

β

fraction of d∗

that is sufficient

(a) e = 216 + 1 ∼ N0

1

0
1 13

8

0.69

β

fraction of d∗

that is sufficient

(b) e ∼ N1/4

Fig. 2. Graphical representation of the results of Corollary 2

Theorem 2. With the previous notations, suppose that e ∼ Nα and d∗ ∼ Nβ.
Then under Assumption 1 and up to a small error factor ε, there exists, for suf-
ficiently large N , a polynomial-time algorithm that computes all of d∗, provided
that

µ >

(
(6β − 5) + 2

√
6α+ (6β − 5)

6
− ε

)
.

The proof of this theorem can be seen as an application of the strategy offered
in [12]. We omit it due to space limitations.

We then obtain:

Corollary 2. Using the notation of Theorem 2, recovering a fraction of d∗ larger
than

(6β − 5) + 2
√

6α+ (6β − 5)

6β
.

is sufficient to recover the entire private exponent d∗ in polynomial time.

Proof (of Corollary 2). This immediately follows from Theorem 2 by noting that
the fraction of d∗ corresponding to the unknown d0 is given by µ

β . ut

A graphical interpretation of Corollary 2, representing the fraction of d∗

required to recover the entire exponent d∗ in polynomial time, is depicted in
Fig. 2.

5 Practical Experiments

The attacks described in Section 3 and 4 were implemented with the SAGE
computer-algebra system [29] using Shoup’s NTL [26], and run on a 2.8 GHz
Intel Core i5 running Mac OS X 10.7.2. In all the listed experiments, we were
able to recover the factorization of N , i.e., in each case, Assumption 1 held. One
can notice that our attacks are much better than predicted (when computing
the theoretical value with the used values of m and t). This difference between
theoretical results and practical ones is studied in [14, 25].

Table 1. Experimental results for the attack on MSBs with a 1000-bit N

(a) e = 65537 ∼ N0

β δ Γ Parameters LLL

1.501 0.39 0.475 m = 4, t = 3 42 sec
dim = 40

1.55 0.34 0.331 m = 3, t = 2 4 sec
dim = 24

1.60 0.25 0.267 m = 2, t = 2 1 sec
dim = 15

1.65 0.20 0.218 m = 3, t = 3 20 sec
dim = 28

1.70 0.10 0.178 m = 6, t = 1 27 min
dim = 56

(b) e ∼ N1/2

β δ Γ Parameters LLL

1.001 0.41 0.475 m = 4, t = 3 57 sec
dim = 40

1.05 0.29 0.331 m = 4, t = 3 1 min 45 sec
dim = 40

1.10 0.23 0.267 m = 3, t = 3 13 sec
dim = 28

1.15 0.20 0.218 m = 4, t = 2 1 min 19 sec
dim = 35

1.20 0.17 0.178 m = 4, t = 2 1 min 43 sec
dim = 35

5.1 Results for attack on MSBs

As an illustration, consider an RSA application making use of a 2048-bit modulus
N and public exponent e. Further, in order to prevent DPA-type attacks, assume
that a 128-bit random multiple ` of φ(N) is added to d, defining the private
exponent d∗ = d+ `φ(N). Thus, β = 2048+128

2048 = 1.06.
Consider the following practical settings:

Case 1: e = 65537, i.e. α ∼ 0. From Corollary 1, it follows that it suffices to
recover the 1/β = 94% of d∗ rather than all of it, allowing 128 bits of d∗

to remain unknown. However, a practical implementation does not require
lattice reduction (see § 3.3) and verifying the latter result is easy.

Case 2: e ∼ N1/2, i.e. α ∼ 1/2. Corollary 1 then tells us that it suffices to
recover the 71% of d∗ rather than all of it, theoretically allowing 640 bits of
d∗ to remain unknown.
A practical implementation with δ = 0.19 (i.e. 0.19× 2048 = 389 bits of d∗

unknown), and parameters m = 7, t = 1 (dim = 72), allowed us to recover
the 389 unknown bits of d∗ in 5 hours and 48 minutes.5

Since the bounds of the algorithms do not depend of the length of the modulus
N , all the following experiments for this attack were performed with a 1000-bit
N , and three different values for the public exponent, e = 216 + 1 = 65537 and
e ∼ N1/2.

For every β value between 1 and 2−α, we looked for the bigger δ that gave us
enough small vectors to recover the root (x0, y0, z0). We tried for each δ different
values of m > 2 and t > 1. The results are presented in Table 1. In our tests,
the bound δ given in the table is reached by d0, and the Γ -column gives the
asymptotic bound which is reached when the lattice dimension goes to infinity.

5 Notice that one can get closer to the theoretical bound by increasing the size of the
lattice (at the expense of an increased running time: for δ = 0.18, with parameters
m = 4, t = 1, dim = 30, the 368 unknown bits were recovered in 2 minutes).

Table 2. Experimental results for the attack on LSBs with a 1000-bit N

(a) e = 216 + 1 ∼ N0

β µ Γ Parameters LLL

1.01 0.58 0.535 m = 2, t = 1 1 sec
dim = 16

1.10 0.76 0.700 m = 2, t = 1 1 sec
dim = 16

1.20 0.96 0.871 m = 2, t = 1 1 sec
dim = 16

1.30 1.16 1.033 m = 2, t = 1 1 sec
dim = 16

(b) e ∼ N1/4

β µ Γ Parameters LLL

1.01 0.77 0.710 m = 2, t = 1 1 sec
dim = 16

1.10 0.92 0.854 m = 4, t = 1 20 sec
dim = 50

1.20 1.08 1.008 m = 5, t = 1 2 min 1 sec
dim = 77

1.30 1.26 1.158 m = 4, t = 1 22 sec
dim = 50

5.2 Results for attack on LSBs

All experiments for this attack were conducted with a 1000-bit N , and two
different values for the public exponent, e = 216 + 1 = 65537 and e ∼ N1/4.

For every β value between 1 and 15/8− α, we looked for the smaller µ that
gave us enough small vectors to recover the root (x0, y0, z0). We tried for each
µ different values of m > 2 and t > 1. The results are presented in Table 2.

In our tests, the bound µ given in the table is reached by dl and the Γ -column
gives the asymptotic bound which is reached when the lattice dimension goes to
infinity.

6 Conclusion

In this paper we established sufficient conditions to successfully mount partial
key exposure attacks on RSA. Unlike previous works, we focused on the practical
setting of a private exponent d larger than the modulusN . We derived theoretical
bounds that were validated through numerical experiments for various parameter
sets. Our results illustrated once more the importance of careful implementation.

Our work raises several open issues. For the interested reader, here some
possible venues for further research. Is it possible to derive bounds when β >
2? Is it possible to mount a key recovery attack when random key bits of d∗

are exposed? This problem naturally finds applications in so-called cold-boot
attacks; see [13, 24]. Is it possible to extend the results to CRT implementations
for arbitrary values for ` and/or e?6 How does the use of unbalanced primes
modify the attack [1]?

References

1. Bleichenbacher, D., May, A.: New attacks on RSA with small secret CRT-
exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key

6 One can apply the same strategy as above to mount a partial key recovery attack
on LSBs for a low public-exponent e.

Cryptography − PKC 2006. Lecture Notes in Computer Science, vol. 3958, pp.
1–13. Springer-Verlag (2006)

2. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
Advances in Cryptology − CRYPTO 2003. Lecture Notes in Computer Science,
vol. 2729, pp. 27–43. Springer-Verlag (2003)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000), extended ab-
stract in Proc. of EUROCRYPT ’98

4. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of
the private key bits. In: Ohta, K., Pei, D. (eds.) Advances in Cryptology − ASI-
ACRYPT ’98. Lecture Notes in Computer Science, vol. 1514, pp. 25–34. Springer-
Verlag (1998)

5. Cohen, G.D., Lobstein, A., Naccache, D., Zémor, G.: How to improve an exponenti-
ation black-box. In: Nyberg, K. (ed.) Advances in Cryptology − EUROCRYPT ’98.
Lecture Notes in Computer Science, vol. 1403, pp. 211–220. Springer-Verlag (1998)

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) Advances in Cryptology − EURO-
CRYPT ’96. Lecture Notes in Computer Science, vol. 1070, pp. 178–189. Springer-
Verlag (1996)

7. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) Advances in Cryptology − EUROCRYPT ’96. Lecture Notes in
Computer Science, vol. 1070, pp. 155–165. Springer-Verlag (1996)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

9. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems (CHES ’99). Lecture Notes in Computer Science, vol. 1717, pp. 292–302.
Springer-Verlag (1999)

10. Coron, J.S.: Finding small roots of bivariate integer polynomial equations re-
visited. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology − EURO-
CRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 492–505. Springer-
Verlag (2004)

11. Coron, J.S.: Finding small roots of bivariate integer polynomial equations: A direct
approach. In: Menezes, A. (ed.) Advances in Cryptology − CRYPTO 2007. Lecture
Notes in Computer Science, vol. 4622, pp. 379–394. Springer-Verlag (2007)

12. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) Advances in Cryptology −
EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 371–386.
Springer-Verlag (2005)

13. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) Advances in Cryptology − CRYPTO 2009. Lecture Notes
in Computer Science, vol. 5677, pp. 1–17. Springer-Verlag (2009)

14. Herrmann, M., May, A.: Maximizing small root bounds by linearization and ap-
plications to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
Public Key Cryptography − PKC 2010. Lecture Notes in Computer Science, vol.
6056, pp. 53–69. Springer-Verlag (2010)

15. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding. Lecture Notes in Computer
Science, vol. 1355, pp. 131–142. Springer-Verlag (1997)

16. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with
new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) Advances
in Cryptology − ASIACRYPT 2006. Lecture Notes in Computer Science, vol. 4284,
pp. 267–282. Springer-Verlag (2006)

17. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073. In: Menezes, A. (ed.) Advances in Cryptology
− CRYPTO 2007. Lecture Notes in Computer Science, vol. 4622, pp. 395–411.
Springer-Verlag (2007)

18. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
Advances in Cryptology − CRYPTO ’99. Lecture Notes in Computer Science, vol.
1666, pp. 388–397. Springer-Verlag (1999)

19. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. Journal of Cryptographic Engineeering 1(1), 5–27 (2011)

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology − CRYPTO ’96.
Lecture Notes in Computer Science, vol. 1109, pp. 104–113. Springer-Verlag (1996)

21. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

22. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis,
University of Paderborn (2003)

23. Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences 13(3), 300–317 (1976)

24. Sarkar, S.: Partial key exposure: Generalized framework to attack RSA. In: Bern-
stein, D.J., Chatterjee, S. (eds.) Progress in Cryptology − INDOCRYPT 2011.
Lecture Notes in Computer Science, vol. 7107, pp. 76–92. Springer-Verlag (2011)

25. Sarkar, S., Sengupta, S., Maitra, S.: Partial key exposure attack on RSA - improve-
ments for limited lattice dimensions. In: Gong, G., Gupta, K.C. (eds.) Progress in
Cryptology − INDOCRYPT 2010. Lecture Notes in Computer Science, vol. 6498,
pp. 2–16. Springer-Verlag (2010)

26. Shoup, V.: Number Theory Library (Version 5.5.2). A library for doing Number
Theory (2011), http://www.shoup.net/ntl

27. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum,
D. (ed.) Advances in Cryptology, Proceedings of CRYPTO ’83. pp. 51–67. Plenum
Press (1984)

28. Simmons, G.J.: The subliminal channel and digital signature. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) Advances in Cryptology, Proceedings of EUROCRYPT 84.
Lecture Notes in Computer Science, vol. 209, pp. 364–378. Springer-Verlag (1984)

29. Stein, W.A., et al.: Sage Mathematics Software (Version 4.7). The Sage Develop-
ment Team (2011), http://www.sagemath.org

30. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

31. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John
Wiley & Sons (2004)

