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Abstract—Differential fault attacks become a threat of increasing im-
portance against cryptographic devices. One of the most efficient hardware
countermeasures for block ciphers to prevent such attacks relies on dupli-
cation. In this paper, we propose novel techniques to implement a duplica-
tion scheme for the AES. Remarkably, our implementation techniques do
not impact the ratio throughput/area and better withstand a large variety
of known fault attacks.

Index Terms—AES, Rijndael, differential fault attacks, hardware imple-
mentation, duplication.

I. INTRODUCTION

The Rijndael block cipher [1] was standardized as the Ad-
vanced Encryption Standard (AES) by NIST in 2001 [2]. It re-
places the Data Encryption Standard (DES) for symmetric-key
encryption.

In addition of being resistant against cryptanalysis, block ci-
phers should also be resistant against implementation attacks,
including side-channel and fault attacks. Fault attacks were de-
veloped by Boneh, DeMillo and Lipton [3] and extended to the
symmetric-key setting by Biham and Shamir [4]. The principle
behind fault attacks consists in modifying the normal behav-
ior of a cryptographic device in order to get a faulty ciphertext.
Then from several faulty ciphertexts, the attacker tries to infer
some information about the secret key (see e.g. [5] for practi-
cal ways to implement fault attacks). When successful, those
attacks are very powerful; for example, applied to the AES,
only two pairs of correct/faulty ciphertexts suffice to recover
the whole secret key [6].

Of course, numerous countermeasures have been proposed to
avoid, prevent or detect fault attacks. We refer the reader to
excellent survey paper [7] for a thorough overview of known
strategies, with an emphasis on AES, to thwart fault attacks.

In this paper, we propose an hardware AES implementation
the cost of which is exactly the cost of duplication as both the
data path and the key path are implemented twice. According
to [7], this seems to be the minimal price to pay for state-of-the-
art countermeasures. Furthermore, duplication presents the ad-
vantage of covering permanent (i.e., hardware) faults. The im-
plementation techniques we suggest are completely free: the ra-

tio throughput/area is unchanged compared to a straightforward
duplicated implementation yet the success probability of an at-
tacker is much lower for a large variety of attacks. Moreover,
in a contrast with a straightforward duplicated implementation,
the security is not completely jeopardized if a final comparison
is bypassed.

We note that our strengthening techniques are simple to im-
plement. They are not restricted to AES and may apply to other
cryptosystems as well. They are reminiscent of the infective
computation notion, introduced by Yen et al. [8] in the context
of RSA cryptosystem.

The rest of this paper is organized as follows. In the next
section, we describe the AES cryptosystem and introduce the
notations used throughout the paper. In Section III, we review
known faults attacks against AES. In Section IV, we present
our methodology to strengthen hardware AES implementations.
Finally, we conclude in Section V.

II. DESCRIPTION OF AES

We briefly review the AES block-cipher [2] (see also [1]).
The AES supports keys of 128, 192 or 256 bits and consists of
10, 12 or 14 rounds, respectively. The block length is of 128
bits.

An AES encryption consists of an initial AddRoundKey oper-
ation (namely, a bit-wise XOR), followed by N rounds (10 for
this paper). Round r, with 1 ≤ r ≤ N , takes on input a 128-bit
state S[r−1] and a 128-bit round key K [r], and outputs a 128-bit
state S[r]. The plaintext is M ∈ {0,1}128 and the ciphertext is
C ∈ {0,1}128. More specifically, we have:




S[0] = M ⊕K [0] ,

S[r] =
(
MixColumns◦ShiftRows◦SubBytes(S[r−1])

)
⊕K [r] for 1≤ r ≤N − 1 ,

C =
(
ShiftRows◦SubBytes(S[N−1])

)⊕K [N ] .

(Note that there is no MixColumns operation in the last round.)
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Each state and the intermediate computations are viewed as a
(4× 4)-matrix of bytes:

(
s
[r]
i,j

)
0≤i≤3
0≤j≤3

.

With this representation, the different transformations operate
on each byte as follows.
• SubBytes(): This transformation substitutes each byte,

s
[r]
i,j , of the state by another byte through a non-linear per-

mutation S-box SRD:

SubBytes : s
[r]
i,j ←− SRD(s[r]

i,j) .

• ShiftRows(): This transformation cyclically shifts row i,
0≤ i≤ 3, over i bytes to the left:

ShiftRows : s
[r]
i,j ←− s

[r]
i,(j+i) mod 4 .

• MixColumns(): This transformation mixes column j, 0 ≤
j ≤ 3, by considering it as a polynomial over GF(28), say
a(x), and by multiplying a(x) modulo (x4 +1) with fixed
polynomial c(x) =

∑
0≤l≤3 cl x

l := 02+ 01x + 01x2 +
03x3:

MixColumns : s
[r]
i,j ←−

⊕

0≤l≤3

s
[r]
(i−l) mod 4,j ¯ cl ,

where ¯ denotes the multiplication in GF(28) represented
as GF(28)∼= GF(2)[x]/(x8 + x4 +x3 + x+1).

We refer the reader to [2] for a description of the key sched-
ule.

III. DIFFERENTIAL FAULT ATTACKS

In this section, we review known differential fault attacks
against AES (see [9], [10] for surveys). We make the distinction
between attacks occurring at the bit level and at the byte level.
However, we do not consider the so-called safe-error attacks
(originaly [11] on RSA, [12] on AES) like bit-forcing attacks.

We use the notations of the previous section. Faulty values
are indicated with an hat symbol (e.g., if an error is induced on
x, we denote by x̂ the resulting faulty value.).

A. Single-Bit Errors

In [13], Giraud considers that a single bit of error is induced
in S[N−1]. We let Ĉ denote the corresponding corrupt cipher-
text. If

ŝ
[N−1]
i,j = s

[N−1]
i,j ⊕ ε where ε = RC(t) and 0 ≤ t ≤ 7 ,

that is, if a single bit of byte (i, j) is modified at the output of
round (N − 1) then it is not difficult to see that the unique non-
zero byte of C⊕Ĉ is located in row i and column (j−i) mod 4.
Hence, we get

∆ := (C ⊕ Ĉ)i,(j−i) mod 4 = s
[N ]
i,(j−i) mod 4⊕ ŝ

[N ]
i,(j−i) mod 4

= SRD(s[N−1]
i,j )⊕ SRD(s[N−1]

i,j ⊕ ε) . (1)

The attacker then guesses the value of ε = RC(t) and finds the
set of possible values for s

[N−1]
i,j verifying Eq. (1). With a few

single-bit errors, the attacker can retrieve the value of round-key
byte k

[N ]
i,(j−i) mod 4 as

k
[N ]
i,(j−i) mod 4 = s

[N ]
i,(j−i) mod 4 ⊕ SRD(s[N−1]

i,j ) .

With sufficiently many single-bit faults, the attacker can thus
recover the whole round-key K [N ] and hence the secret key by
reversing the key scheduling.

B. Single-Byte Errors

A weaker fault model is to assume that a fault results in the
modification of a single byte [14], [15], [13], [6]. We refer the
reader to [14], [13] for attacks against the key schedule. We
do not consider the case of a fault reducing the number of AES
rounds [16]; see [17].

We follow the presentation of [6]. Suppose that a single-byte
fault is induced before the MixColumns of round (N − 1), for
example in SubBytes(S[N−2]), say at position (i, j). Again,
we let (C, Ĉ) denote the corresponding pair of correct/faulty
ciphertexts. We have:

ŜRD(s[N−2]
i,j ) = SRD(s[N−2]

i,j )⊕ ε with ε ∈ GF(28) \ {0} .

Such a fault affects 4 bytes in the output ciphertext. The 4 non-
zero bytes of C ⊕ Ĉ are located in

(0,d), (1,(d− 1) mod 4),
(2,(d− 2) mod 4), (3,(d− 3) mod 4)

where d := (j− i) mod 4. Observe that they are located in the
same column before the last ShiftRows.

The attacker prepares a list, say Ld, containing 255 · 4 =
1020 possible differences at the output of MixColumns of round
(N − 1). Next, the attacker makes a guess on the 4 round-key
bytes, (k[N ]

0,d , k
[N ]
1,(d−1) mod 4, k

[N ]
2,(d−2) mod , k

[N ]
3,(d−3) mod 4), and

checks whether

∆ := SubBytes−1
(
(C ⊕K [N ])∗,d

)⊕
SubBytes−1

(
(Ĉ ⊕K [N ])∗,d

)
(2)

is an element of Ld — and if so, the 4 round-key bytes is a pos-
sible candidate. This attack requires on average 8 pairs of cor-
rect/faulty ciphertexts (2 for each column) to recover the whole
secret key.

This can be reduced to only 2 pairs by inducing faults before
the MixColumns of round (N − 2) because then a corrupt byte
results in 16 faulty bytes in the final output. See [6] for details.

IV. OUR HARDWARE IMPLEMENTATION TECHNIQUES

A number of hardware countermeasures have been proposed
to protect AES implementations against faults. According to a
recent comparative study [7], the cost of robust (hardware) AES
implementations is close to duplication. To this end, we devise
in this section simple methods which increase the resistance of
duplicated AES implementations against faults but do not im-
pact their cost.
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A. Description

As exemplified in Section III, the attacker needs some knowl-
edge on the fault propagation to succeed in recovering informa-
tion on the secret key. Intuitively, our methodology consists in
changing this propagation path. We present hereafter different
realizations.

A.1 Basic approach

In a duplicated AES hardware implementation, both the data
path and the key path are duplicated so that two executions of
the AES algorithm run in parallel. We exploit this property to
scramble the state bytes between the two executions. Doing
so, we ensure that a fault on one data path will likely result in
a fault on the other data path. The expected fault-propagation
path being modified, it is harder to mount an attack.
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Fig. 1. AES ShiftRows.

A natural place to perform this scrambling is during the
ShiftRows transformation as it can already be considered as
a kind of byte scrambling — but on the same data path (i.e.,
data path A and data path B on Fig. 1-a). It is however worth
noting that this technique can easily be implemented at other

places as well (including in the key schedule). An application
of our basic approach to the ShiftRows transformation is de-
picted on Fig. 1-b. We see that certain state bytes on data path A
are swapped with their corresponding state bytes on data path B.

This scrambling technique prevents some attacks (see § III-B)
and does not change a correct execution.

A.2 Better approach

The only requirement of the byte scrambling in the basic ap-
proach was to keep a non-faulty execution safe. The scrambling
can also be done at the bit level. If no fault occurs, everything
is unchanged; otherwise, individual bits inside the byte states
may be affected. Again, this is illustrated for the ShiftRows
transformation on the next figure.

C C C C C C C C CC C CF F F F F
0 77 0

correct bit

faulty bitF

C

C C C C C C C C C C CF F F F F
07

Data Path A Data Path B

0

bit from data path B

7

ShiftRows 

bit from data path A

Fig. 2. Bit-level scrambling in ShiftRows.

This bit-oriented scrambling has a lot of possible realizations.
There are 2128 combinations for an AES state since each bit can
be swapped or not with the corresponding bit in the other path.
Actually, in our FPGA implementation (see § IV-C), we only
used a set of four bits for each byte to get a balanced “diffusion”,
which yields

(
8
4

)16≈ 298 possible scramblings for an AES state.
Unlike the byte-oriented scrambling, this technique cannot

easily be transposed to a software implementation. However,
it is fairly easy to emulate it. For example, if the state bytes
of data paths A and B are respectively sA and sB, they can be
replaced with sA ← sA⊕ sAB and sB ← sB⊕ sAB where sAB :=
C ¯ (sA⊕ sB) for a byte constant C.

B. Security Analysis

We now evaluate the security of our techniques regarding the
attacks described in Section III. Other attacks are treated anal-
ogously. For the sake of concreteness, we consider a duplicated
AES implementation where only the inputs of ShiftRows are
scrambled byte-wise or bit-wise, in a balanced way. Note that
in an actual AES implementation, mounting successful fault at-
tacks is much harder as scramblings are applied at other loca-
tions, including in the key schedule.

We stress that in the case of an implementation setting a flag
when an error is detected, the attacker should in addition be able
to bypass this detection to mount the attacks described below.

B.1 Byte-wise scrambling

An inherent limitation of the byte-wise approach is under-
lined by the flipping-bit attack of § III-A. In this attack, the
fault occurs at the beginning of the last round and only affects
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one byte at a time. After ShiftRows, either the faulty byte re-
mains unchanged or it is swapped with a correct one (only half
of the key is recovered by targeting a single data path).

Concerning the single-byte attack (cf. § III-B) against a byte-
wise scrambled implementation, the corrupt data path will not
yield the expected ciphertext. However, the attack can be ex-
tended at the expense of much more fault inductions and data
processing (see the next paragraph for a similar extension).

B.2 Bit-wise scrambling

We will see in this paragraph that the bit-wise approach leads
to a more robust implementation. Further, from a hardware
viewpoint, it is as easy to implement and does not increase the
complexity. This is the scrambling technique we recommend.

Given difference ∆, the flipping-bit attack requires a unique
solution s

[N−1]
i,j to Eq. (1) for some ε = RC(t) with 0 ≤ t ≤

7 (cf. § III-A). If, after SubBytes, the faulty byte ŝ
[N−1]
i,j is

scrambled, Eq. (1) will no longer be satisfied; it will only be
correct truncated to the four non-swapped bits (remember that
we assume a balanced scrambling). It remains for the attacker to
recover for each byte state the location of the non-swapped bits.
This can be achieved by inspection after a few experiments.

We conducted a series of simulations to evaluate the resis-
tance of our implementation against this extended attack. This
was done by software. Contrary to [13], we considered random
— not necessarily different — faults when evaluating the suc-
cess probability.∗ The results are summarized in Table I. Suc
denotes the success probability of Giraud’s attack and #k de-
notes the average number of wrong candidates for a round-key
byte.

TABLE I
RESISTANCE AGAINST GIRAUD’S FLIPPING-BIT ATTACK.

1 fault 2 faults 4 faults 8 faults 16 faults
Suc #k Suc #k Suc #k Suc #k Suc #k

Straightfwd impl. 0% 8 71% 1 97% 0 — — — —
Our implementation 0% 105 0% 52 0% 17 33% 3 71% 1

We see for example that the effort to recover a state byte with
a success probability of 71% is at least 8 times more demanding
than in the original attack.

For the single-byte attack (cf. § III-B), it is seemingly not
possible to extend it as the attacker should know how the fault
propagates through the device. It appears that the only way to
mount a successful attack would require to timely induce the
same faults in both data paths. Such a security model is nowa-
days considered as unrealistic.

C. FPGA Implementation

We used the Xilinx ISE framework to design our protected
AES. The synthesis was performed with XST application and
all simulations (functional, post-synthesis and post-place and
route) with Modelsim. The FPGA target was XCV2000E from

∗ For example, three random single-bit faults yields a success probability of
91% within our model, whereas three different single-bit faults yields a success
probability of 97% [13].

Xilinx Virtex-ETM family. This FPGA was embedded on an In-
tegrator/LM XCV600E+ from ARM Ltd.

Fig. 3. View of the demonstrator.

C.1 Hardware description

We found an interesting AES structure on opencores web-
site. This implementation makes use of functions to resolve
each step of an AES round. We kept the global architec-
ture but implemented each round transformations with data-
flow description. Each round is computed within a clock cycle.
The S-boxes (SubBytes transformations) are internal dual-port
RAM blocks.

Implementing a duplicated path version of this AES was very
convenient. The round execution is described using one compo-
nent for each transformation, so duplication of the path in our
case just means duplication of the components. Following our
methodology, we replaced the two ShiftRows by a common
box with two states for the inputs and outputs. As we described
ShiftRows in a material way, we only had to use a bit-wise
instead of a byte-wise affectation.

C.2 Performances

The implementation of our unprotected, non-duplicated AES
takes 1005 slices for a 60 MHz clock frequency. The unpro-
tected AES also uses ten dual-port RAMs: eight for the 16 data-
path S-boxes and two for the 4 key schedules.

The protected version using our strengthening techniques re-
quires 1600 slices† and does not change the throughput. The
RAM blocks are doubled, so 20 blocks are used. In compari-
son with a straightforward implementation of a duplicated AES,
our implementation techniques do not oversize the area or slow
down the execution. As a result, the global cost of the protection
is only the cost of duplication in area.

C.3 Further results

Our implementation was optimized neither for speed nor for
area. However as our techniques merely cross wires, they
should readily extend to any duplicated implementation with-
out overhead.

† Note that control and i/o interfaces are not duplicated.
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The duplication of the data path increases the power signa-
ture and thus may render DPA attacks [18] easier. We tested a
complemented duplicated data-path and key expander to have
a ‘1’ used for each ‘0’ and vice versa. This DPA countermea-
sure induces an inverter on each crossed wire, implying a gate
overhead of 128 inverters.

V. CONCLUDING REMARKS

In this paper, we presented techniques for strengthening
the resistance of AES hardware implementations when imple-
mented using duplication. Our techniques are easy to imple-
ment and give rise to no overhead in both the area and the
throughput. We also gave a security analysis and presented our
concrete FPGA implementation.

Our methodology consists in scrambling byte states between
the two executions, in different ways (byte-wise or bit-wise) and
at different locations. The next step is to perform the scrambling
in a random way. We will evaluate the cost of this extension in
a future work.
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[17] G. Gaubatz, E. Savaş, and B. Sunar, “Sequential circuit design for em-
bedded cryptographic applications resilient to adversarial faults,” IEEE
Transactions on Computers, to appear.

[18] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology − CRYPTO ’99, ser. Lecture Notes in Computer Science,
vol. 1666. Springer, 1999, pp. 388–397.


