
How to Use RSA; or How to Improve the
Efficiency of RSA Without Loosing its Security

(Extended Abstract)

[Published in U. Schulte, Ed., ISSE 2002, on CD-ROM, Paris, France,
October 2–4, 2002.]

Marc Joye and Pascal Paillier

Gemplus Card International, France
{marc.joye, pascal.paillier}@gemplus.com

http://www.gemplus.com/smart/

Abstract. It is striking to observe the progressive explosion of RSA
key lengths. Although this trend clearly corresponds to a (legitimate)
ever-increasing need for a guaranteed security level, this paper considers
alternative, more efficient, secure implementations of RSA with respect
to industrial constraints.
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1 Better RSA Moduli without Security Loss

The RSA cryptosystem [14] is still a de-facto standard in all branches of public-
key cryptography. However, it is rapidly loosing its attractiveness. This is mainly
due to the enormous key lengths necessary to make RSA secure.

Recently, following a report by Lenstra and Verheul (now published in [11]),
several organizations suggested to increase the key size of an RSA modulus up to
2048 bits. Even though hardware-enhanced programmable devices such as smart
card cryptographic processors are becoming more and more efficient over time,
our feeling is that considerable research efforts in the field could be saved by
the simple fact of allowing several prime factors to appear in the factorization of
RSA moduli. For example, one can envision to perform an RSA exponentiation
with a 2048-bit modulus of the form N = pqrs where p, q, r, s are 512-bit primes.
Another possible choice is a modulus of the form N = pkq (see [17]).

We stress that the security level of RSA in such a case remains completely
unchanged unless major scientific discoveries (new factoring algorithms) are car-
ried out in the field of integer factorization. Indeed, the current state of the art
includes two main families of factorization algorithms. The first family presents
a running time which depends on the total length of the number to be factored
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while the running time of algorithms belonging to the second family only de-
pends on the length of the factors. The most popular representative of the first
family is the number field sieve (NFS). The second family includes the elliptic
curve method (ECM). The main threat for RSA comes from the first family of
factorization algorithms and more particularly NFS and its variants. A factor of
512 bits is really beyond the scope of ECM.

2 Better RSA Public Exponents without Security Loss

For historical reasons, there is a confusion between the RSA primitive (that is,
the modular exponentiation function) and an RSA encryption/signature scheme
(that is, a particular way to use the RSA primitive to encrypt or to sign a
message). In the original paper ([14]), the RSA primitive is used to encrypt or to
sign messages. This is definitely not a reasonable way to use RSA. As observed by
Goldwasser and Micali [5], an encryption scheme had better to be probabilistic.
The same conclusion holds for signature schemes [6]. The now recommended
ways to use RSA rely on the Optimal Asymmetric Encryption Padding (OAEP)
for encryption [1] and the Provable Secure Scheme (PSS) for signature [2]. This
is supported by the RSA Laboratories [9, 10] and will be followed by the IEEE
and ANSI X9 standards.

Numerous attacks are reported on the bad use of small public exponents
in the RSA primitive (see the survey paper by Boneh [4] and the references
therein). There are no known such attacks on a provable secure version of RSA
(e.g., OAEP or PSS): such a scheme with a small public exponent is no less
secure than a scheme with a large exponent. However, as small exponents lead
to much better performances, they are no reasons to use large public1 exponents.

3 Better RSA Primes without Security Loss

Another reminiscence of history is the use of so-called safe, strong or X9.31 RSA
primes. The reason of using such primes was to prevent some classes of attacks.
In particular, they were introduced to better resist the cycling attacks [16] (see
also [20, 7, 3]) and the (p− 1) and (p + 1) factoring attacks [13, 19]. We refer the
reader to [15] for an account concerning the recommendations of special RSA
primes. The lesson is that they are now obsolete owing to new factorization
algorithms (more particularly ECM). More importantly, they offer a negligible
increase of security over random primes of the same size [15, 8].

4 Conclusion

We believe it is important that standardization committees (and standards
through them) recognize that RSA signature (or decryption) performances could
1 For private exponents, this is another story . . . See [18].
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be significantly improved at no cost at all provided that secret prime factors re-
main out of the reach of ECM-like factoring algorithms. A second improvement
consists in choosing a small public exponent as the popular values e = 3 or
e = 216 + 1. Finally, we recommend random primes in the RSA key generation.
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