
Published in S. Dolev, J. Katz, and A. Meisels, Eds., Cyber Security, Cryptography, and Machine
Learning (CSCML 2022), vol. 13301 of Lecture Notes in Computer Science, pp. 1–18, Springer,
2022.

Blind Rotation in Fully Homomorphic
Encryption with Extended Keys

Marc Joye and Pascal Paillier

Zama, France

Abstract. Most solutions for fully homomorphic encryption rely on
hard lattice problems. Accordingly, the resulting ciphertexts must con-
tain a certain level of noise to guarantee the security of the encryption.
Running homomorphic operations on these noisy ciphertexts in turn fur-
ther increases the noise level in the resulting ciphertexts. If the noise ex-
ceeds a given threshold, the ciphertexts are no longer decryptable. Boot-
strapping enables to deal with this issue by resetting the noise present
in a ciphertext to a nominal level.
Certain fully homomorphic encryption schemes require the use of binary
keys for the bootstrapping operation. This paper describes how to extend
the underlying blind rotation so as to efficiently support a wider num-
ber of key formats. It also investigates a multi-digit approach wherein
multiple key digits are processed concurrently. All in all, the proposed
solutions offer more flexibility in the parameter selection and yield a
variety of new trade-offs for better performance.

Keywords: Fully homomorphic encryption · FHEW · TFHE · Key gen-
eration · Private machine learning.

1 Introduction

Fully homomorphic encryption (FHE) [16] is a very powerful cryptographic prim-
itive. It allows performing arbitrary computation directly on encrypted data—
without ever requiring intermediate decryption.

All known FHE instantiations follow the same blueprint, as originally de-
vised in Gentry’s seminal paper [11]. The idea is (i) to start with a “somewhat”
homomorphic encryption scheme which supports a bounded number of homo-
morphic operations and (ii) to convert it into a fully homomorphic encryption
scheme. The conversion step is referred to as the bootstrapping. Basically, this
is accomplished by homomorphically evaluating the decryption function on the
ciphertext. The resulting ciphertext encrypts the same plaintext but is somehow
“refreshed”. Homomorphic operations can therefore be further iterated again
and again. This is particularly appealing in the case of private machine learning,
where inference is performed homomorphically over user-encrypted data using
substantially deep models with a number of layers in the hundreds.

The bootstrapping is however a relatively demanding operation and, despite
of being intensively studied (e.g., [12,2,6,3,9,10,7,17]), remains the main bottle-



neck in current FHE implementations. Another approach is to avoid bootstrap-
pings altogether and to increase the cryptographic parameters accordingly in
order to accommodate the circuit being evaluated in a leveled way [5]. This, in
turn, limits homomorphic inference to smaller models with at most a few tens
of layers.

Our contributions. The most efficient bootstrappings to date are achieved by
GSW-derived cryptosystems [9,7] and their variants. The TFHE cryptosystem [7]
displays a time of a few tens of milliseconds to perform a bootstrapping with typ-
ical parameters on a regular laptop. By design, TFHE (and its variants like [8])
requires binary keys in an essential way for the bootstrapping.

In a recent work, Micciancio and Polyakov [15] remark that a ternary key
can be viewed as a difference of two binary keys. This allows them to evaluate
a bootstrapping with ternary keys as a series of two original bootstrappings
(i.e., with binary keys). Moving from binary keys to ternary keys or more can
be useful at it allows for trade-offs (speed/size of the bootstrapping keys/noise
level) otherwise not necessarily applicable for a given security level.

Another important motivation to switch from binary to ternary (or more)
is to easily fall back to the next best alternative, should e.g. the special case
of binary keys reveal less secure than expected. Our extended settings allow
one to carefully reevaluate the new best trade-offs available after any kind of
security-impacting breakthrough.

Our main results are:

– The core operation for the bootstrapping in TFHE and the likes is a blind
rotation. It consists of a succession of external products which comprise
polynomial multiplications and integer recodings. If n denotes the number
of digits of a ternary key, the method of Micciancio–Polyakov requires 2n
external products. We rely on an additive representation and show how a
bootstrapping with ternary keys can be done with only n external prod-
ucts. Furthermore, our method features the same memory requirements as
in Micciancio–Polyakov’s method for storing the corresponding bootstrap-
ping keys.

– We demonstrate that our approach is generic and can be adapted to sup-
port arbitrary key formats. Specifically, we extend our ternary approach to
keys expressed in a general radix. Somewhat surprisingly, for an encryption
key represented with n digits, the number of external products required to
complete a bootstrapping is equal to n. We note that the dimension n is a
decreasing function of the radix.

– In [17], Zhou et al. point out that two bits of the secret key can be processed
concurrently during the bootstrapping of the TFHE scheme. Their approach
was later refined in [4]. We extend our additive splitting to higher radices
and detail how the number of external products can be reduced to n/d by
processing d digits per iteration. The number of bootstrapping keys however
increases very quickly. In practice, d is likely restricted to small values like
d = 2 or d = 3.



Outline of the paper. The rest of the paper is organized as follows. In the next
section, we review the bootstrapping behind TFHE, including its extension to
programmable bootstrapping. Section 3 introduces our main technique. We ex-
plain how the multiplicative splitting in Micciancio–Polyakov’s approach can be
turned into an additive one. This gives rise to a more efficient bootstrapping
for ternary keys. We then generalize our new approach to higher-radix repre-
sentations in Section 4. We also cover the case of multiple digits processed con-
currently. Section 5 provides a performance analysis according to the parameter
selection. Finally, we conclude the paper in Section 6.

2 Programmable Bootstrapping

The bootstrapping is an essential technique for FHE as it enables to control
the noise growth and to refresh ciphertexts whenever the noise exceeds a given
level. In this section, we review the bootstrapping for the TFHE family and its
extension to programmable bootstrapping.

The (discretized) TFHE scheme. For our purposes, we consider the TFHE fam-
ily. We follow the presentation of [8,14].1 Define the polynomial ring ZN,q[X] =
(Z/qZ)[X]/(XN + 1) where q and N are powers of 2. Define also the binary set

B = {0, 1} and BN [X] = B[X]/(XN + 1). For a secret key s
$← BN [X]k, the

GLWE encryption of a plaintext µ ∈ ZN,q[X] is given by c= (a1, . . . ,ak, b) ∈
ZN,q[X]k+1 where aj

$← ZN,q[X] and b =
∑k

j=1 sj aj + µ∗ with µ∗ = µ + e for
some (small) random noise e. We write c← GLWEs(µ). When (N, k) = (1, n),
it turns out that ZN,q[X] = Z/qZ and the above procedure leads to an LWE
ciphertext. We then write c ← LWEs(µ) = (a1, . . . , an, b) ∈ (Z/qZ)n+1 as the
encryption of a plaintext µ ∈ Z/qZ under the secret key s = (s1, . . . , sn) ∈ Bn,

where aj
$← Z/qZ and b =

∑n
j=1 sj aj + µ∗ with µ∗ = µ + e for some (small)

random noise e.

Blind rotation. The main step in the TFHE bootstrapping is the so-called blind
rotation. It converts an LWE ciphertext c ← LWEs(µ) ∈ (Z/qZ)n+1 into a
ciphertext c′ ← GLWEs′(X

−µ̃∗ · v) ∈ ZN,q[X]k+1; namely, a GLWE encryption
of X−µ̃∗ · v under key s′ ∈ BN [X]k, where µ̃∗ is a rounded approximation of
µ∗ = µ+ e and v is a “test” polynomial. Specifically, if c = (a1, . . . , an, b) then

−µ̃∗ = −b̃+
n∑

j=1

sj ãj (mod 2N)

where b̃ =
⌈
2N(b mod q)

q

⌋
ãj =

⌈
2N(aj mod q)

q

⌋
(1 ≤ j ≤ n)

1 As originally described, TFHE is defined over the real torus R/Z. We rather consider
the discretized torus q−1Z/Z and identify its elements with integers modulo q.



and the test polynomial v is programmed as a look-up table so that X−µ̃∗ ·v, up
to a random indexing error (a.k.a. drift), encodes f(µ) for a chosen function f ;
see [8,14] for details.

The blind rotation is detailed in Algorithm 1. It requires n bootstrapping
keys, bsk[j] ← GGSWs′(sj) for 1 ≤ j ≤ n; GGSW denotes a (general) Gentry–
Sahai–Waters encryption [13] derived from a gadget matrix G. The blind ro-
tation can be calculated as a series of CMux operations. On input a GGSW
ciphertext C encrypting a bit b ∈ {0, 1} and two GLWE ciphertexts c0 and c1,
the CMux operation outputs a ciphertext encrypting the same plaintext as cb,

c′ ← CMux(C,c0,c1) := c0 + C⊡ (c1 − c0)

where ⊡ denotes the external product of ciphertexts. The external product dom-
inates the cost in a blind rotation. Given a GGSW ciphertext C1 ← GGSW(µ1)
and a GLWE ciphertext c2 ← GLWE(µ2), their external product is defined as
C1 ⊡ c2 = G−1(c2) · C1 where G−1(c2) is the gadget decomposition of c2.
The transformation G−1 flattens the vector of polynomials c2 ∈ ZN,q[X]k+1

into a row vector of (k + 1)ℓ polynomials of Z[X]/(XN + 1) with small signed
coefficients. The goal is to contain the noise growth. For better efficiency, the
underlying polynomial multiplications are carried out in the Fourier domain
(dyadic multiplications). Most of the time in an external product of ciphertexts
is spent in going back and forth in the Fourier domain. Again, we refer the reader
to [8,14] for details.

Algorithm 1: Blind rotation (binary case).

1 acc← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do
3 acc← CMux(bsk[j], acc, X ãj · acc)

/* acc← acc+ bsk[j]⊡
(
(X ãj − 1) · acc

)
*/

4 end for

5 return acc

It can be verified that at the end of the for-loop in Algorithm 1, the accu-
mulator acc contains a GLWE encryption of X−µ̃∗ · v under key s′.

Proposition 1. Algorithm 1 is correct.

Proof. First, at initialization, acc contains (0, . . . , 0, X−b̃ · v) ∈ ZN,q[X]k+1,

which is a valid GLWE encryption of X−b̃ · v. We so have c′
0 := (0, . . . , 0, X−b̃ ·

v) = GLWEs′(X
−b̃ · v). Next, by induction, we assume that the result is correct



for i = j − 1. We must prove that it remains correct for i = j. We have:

c′
j := CMux(bsk[j],c′

j−1, X
ãj · c′

j−1)

=

{
c′
j−1 if sj = 0

X ãj · c′
j−1 if sj = 1

= Xsj ãj · c′
j−1

= Xsj ãj ·GLWEs′(X
−b̃+

∑j−1
i=1 si ãi · v) = GLWEs′(X

−b̃+
∑j

i=1 si ãi · v)

which proves the correctness of Algorithm 1. ⊓⊔

3 Using Ternary Keys

As seen in the above proof, the bootstrapping for the TFHE family crucially
makes use of the identity

Xsj ãj =

{
1 if sj = 0

X ãj if sj = 1

= sj (X
ãj − 1) + 1

for sj ∈ {0, 1}. It is therefore inherently restricted to binary keys. This section
exposes two different strategies to extend TFHE and the likes to ternary keys.

3.1 Micciancio–Polyakov’s Approach

In [15], Micciancio and Polyakov astutely notice that any vector s = (s1, . . . , sn)
with ternary entries sj ∈ {0, 1,−1}, 1 ≤ j ≤ n, can be expressed as the difference
of two binary vectors s1 = (s11, . . . , s

1
n) and s2 = (s21, . . . , s

2
n) ∈ Bn:

(s1, . . . , sn) = (s11, . . . , s
1
n)− (s21, . . . , s

2
n)

where, for 1 ≤ j ≤ n,

(s1j , s
2
j ) =


(0, 0) if sj = 0

(1, 0) if sj = 1

(0, 1) if sj = −1
.

The number of bootstrapping keys is doubled and is equal to 2n. They are given
by

bsk[2(j − 1) + i]← GGSWs′(s
i
j)

for all 1 ≤ j ≤ n and for all 1 ≤ i ≤ 2. With the previous notation, the
authors of [15] exploit the multiplicative nature of the bootstrapping. The GLWE



encryption of X−b̃+
∑n

j=1 sj ãj · v =
(∏n

j=1 X
s1j ãj (X−1)s

2
j ãj

)
· (X−b̃ · v) is then

obtained iteratively as{
c′
2j−1 ← CMux(bsk[2j − 1],c′

2j−2, X
ãj · c′

2j−2)

c′
2j ← CMux(bsk[2j],c′

2j−1, X
−ãj · c′

2j−1)

for j = 1, . . . , n, with c′
0 ← (0, . . . , 0, X−b̃ · v). Algorithmically, we have:

Algorithm 2: Blind rotation (ternary case).

1 acc← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do
3 acc← acc+ bsk[2j − 1]⊡

(
(X ãj − 1) · acc

)
4 acc← acc+ bsk[2j]⊡

(
(X−ãj − 1) · acc

)
5 end for

6 return acc

With ternary keys, the evaluation of GLWEs′
(
X−b̃+

∑n
j=1 sj ãj · v

)
thus in-

volves 2n external products. For a same value of n, this is twice more than in
the binary case.

3.2 Proposed Approach

The blind rotation with ternary keys of Algorithm 2 can be largely improved. In-

stead of a multiplicative split, we observe that the monomialXsj ãj = X(s1j−s2j ) ãj

with s1j , s
2
j ∈ {0, 1} can be expressed in an additive way as

Xsj ãj = s1j (X
ãj − 1) + s2j (X

−ãj − 1) + 1 . (1)

Remark 1. It is interesting to note that Equation (1) can be equivalently ex-
pressed as Xsj ãj = (1 − s1j − s2j ) + s1j X

ãj + s2j X
−ãj = (1 − s1j − s1j )X

0·ãj +

s1j X
1·ãj + s2j X

(−1)·ãj .

As in Section 3.1, we define the 2n bootstrapping keys bsk[2(j − 1) + i] ←
GGSWs′(s

i
j) for all 1 ≤ j ≤ n and for all 1 ≤ i ≤ 2. An application of the

GGSW encryption to the above relation (1) leads to

GGSWs′(X
sj ãj )←

(X ãj − 1) bsk[2j − 1] + (X−ãj − 1) bsk[2j] + GGSWs′(1) .

We therefore obtain a new algorithm for the blind rotation. It is given in Algo-
rithm 3.

Interestingly, the calculation of a blind rotation with ternary keys using Al-
gorithm 3 only requires n external products.



Algorithm 3: Blind rotation (ternary case), revisited.

1 acc← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do
3 acc← acc+

(
(X ãj − 1) bsk[2j − 1] + (X−ãj − 1) bsk[2j]

)
⊡ acc

4 end for

5 return acc

4 Extensions and Generalizations

4.1 Higher Radices

The proposed approach can be extended to support arbitrary formats of keys.
For full generality, we suppose that the keys are drawn from an arbitrary set S

(e.g., S = {0, 1,−1} for ternary keys). We let m = #S denote the cardinality
of S. The monomial Xsj ãj can be written additively as

Xsj ãj =
∑
t∈S

1l{t = sj}︸ ︷︷ ︸
:=σj,t

Xt ãj . (2)

In the above equation, 1l denotes the predicate function (i.e., 1l{t = sj} = 1
when t = sj and 1l{t = sj} = 0 otherwise).

We define the set I = {0, . . . ,m − 1}. We also define the “alphabet” vector
A ∈ Sm whose components are the different elements of S. For example, back to
ternary keys, we have m = 3 and write A = (0, 1,−1) so that A[0] = 0, A[1] = 1
and A[2] = −1. Vector A gives rise to function

A : I → S, i 7→ A(i) = A[i]

taking on input an index i ∈ I and returning the ith component2 of A. Equa-
tion (2) can therefore be equivalently rewritten as

Xsj ãj =

m−1∑
i=0

1l{A(i) = sj}XA(i) ãj . (3)

The first digit in the alphabet vector is τ0 := A[0] = A(0). As the predicate
function 1l{A(i) = sj} is true for exactly one index i ∈ {0, . . . ,m−1}, we deduce
from Eq. (3) that

Xsj ãj = XA(0) ãj +

m−1∑
i=1

1l{A(i) = sj}
(
XA(i) ãj −XA(0) ãj

)
. (4)

Interestingly, compared to Eq. (3), the formulation of Eq. (4) involves only m−1
predicate evaluations.

2 Starting at i = 0.



Hence, defining n(m − 1) bootstrapping keys bsk[(m − 1)(j − 1) + i] ←
GGSWs′(σj,t) with σj,t = 1l{t = sj} and t = A(i), for all 1 ≤ j ≤ n and
for all 1 ≤ i ≤ m− 1, we obtain Algorithm 4. Somewhat surprisingly, the num-
ber of external products remains equal to n. For a given security level, we note
the value of n is a decreasing function of m; see Appendix A.

Algorithm 4: Blind rotation (higher-radix case).

1 acc← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do

3 acc← XA(0) ãj ·acc+
(∑m−1

i=1 (XA(i) ãj−XA(0) ãj ) bsk[(m−1)(j−1)+i]
)
⊡acc

4 end for

5 return acc

Remark 2. If the digit alphabet S contains the digit 0, it is advantageous to set
the first digit τ0 to 0 (and thus A(0) = 0) so that Line 3 in Algorithm 4 simplifies
to

acc← acc+
(∑m−1

i=1 (XA(i) ãj − 1) bsk[(m− 1)(j − 1) + i]
)
⊡ acc

4.2 Multi-Digit Approach

The number of external products can be further decreased. We combine and
extend the multi-bit approach of [17,4] to the case of a secret key expressed as a
series of digits in a higher radix. The idea is to process several digits concurrently.

In the previous section, the monomial Xsj ãj is additively expressed under
the form Xsj ãj =

∑
t∈S σj,t ·Xt ãj with σj,t = 1l{t = sj}. Let τ0 = A[0] = A(0)

denote the first digit in the alphabet vector. With two digits, we can express the
corresponding monomial as

Xsj1 ãj1+sj2 ãj2

= Xsj1 ãj1 Xsj2 ãj2

=

(∑
t∈S

σj1,t ·Xt ãj1

)(∑
t∈S

σj2,t ·Xt ãj2

)
=

∑
t1∈S

∑
t2∈S

σj1,t1σj2,t2 ·Xt1 ãj1Xt2 ãj2

= Xτ0(ãj1+ãj2 ) +
∑

(t1,t2)∈S2\{(τ0,τ0)}

σj1,t1σj2,t2 ·
(
Xt1 ãj1+t2 ãj2 −Xτ0(ãj1+ãj2 )

)
.



More generally, for d digits, we get

X
∑d

l=1 sjl ãjl = Xτ0
∑d

l=1 ãjl +∑
(t1,...,td)∈Sd\{(τ0,...,τ0)}

(∧d
l=1 σjl,tl

)
·
(
X

∑d
l=1 tl ãjl −Xτ0

∑d
l=1 ãjl

)
.

To ease the presentation, we henceforth assume that d | n. We can write∑n
j=1 sj ãj =

∑n/d
h=1

∑d
l=1 s(h−1)d+l ã(h−1)d+l. We define n

d (m
d − 1) bootstrap-

ping keys

bsk[(md − 1)(h− 1) +
∑d

l=1 il m
l−1]← GGSWs′

(∧d
l=1 σ(h−1)d+l,tl

)
with (t1, . . . , td) = (A(i1), . . . ,A(id)), for all 1 ≤ h ≤ n/d and for all (i1, . . . , id) ∈
{0, . . . ,m − 1}d with (i1, . . . , id) ̸= (0, . . . , 0). The number of external products
decreases to n/d.

Algorithm 5: Blind rotation (multi-digit case).

1 acc← (0, . . . , 0, X−b̃ · v)
2 for h = 1 to n/d do

3 acc← XA(0)
∑d

l=1 ã(h−1)d+l ·acc+
(∑

0≤i1,...,id≤m−1
(i1,...,id )̸=(0,...,0)

(X
∑d

l=1 A(il) ã(h−1)d+l −

XA(0)
∑d

l=1 ã(h−1)d+l) bsk[(md − 1)(h− 1) +
∑d

l=1 il m
l−1]

)
⊡ acc

4 end for

5 return acc

Remark 3. Again, similarly to Remark 2, when digit 0 ∈ S, setting A[0] =
A(0) = 0, Line 3 in Algorithm 5 simplifies and becomes

acc← acc+
(∑

0≤i1,...,id≤m−1
(i1,...,id) ̸=(0,...,0)

(X
∑d

l=1 A(il) ã(h−1)d+l − 1) bsk[(md − 1)(h− 1)

+
∑d

l=1 il m
l−1]

)
⊡ acc

5 Performance Analysis and Experiments

In this section, we analyze the performance of our extended blind rotation. Our
efficiency comparisons are based on a C library called zlib specifically designed
to conduct experiments on TFHE. Lightweight and modular, the purpose of
zlib is to finely tune the bootstrapping procedure, establish the performance
profile of various algorithmic strategies on CPUs, and see how they compare
depending on their parameters.



5.1 LWE Estimator for Security Estimates

The security of LWE encryption depends on its parameters in a way that is
dictated by the current state-of-the-art attacks on LWE. We rely on the LWE
Estimator [1]3 to enforce a desired security level. Given an LWE dimension n, a
secret key uniformly drawn from Sn with #S = m, a ciphertext precision p and
a noise variance v, this tool provides a security estimate

λ = LWE-security(n,m, p, v)

against an IND-CPA adversary to whom an unbounded number of encryptions
of zero are given. The LWE-security function is also valid for GLWE and GGSW
ciphertexts when n is replaced with kN .

5.2 Nominal Setting

Our nominal setting, and basis for comparison, is set to (d,m) = (1, 2). This
means that the LWE secret key embedded in the bootstrapping key is a usual
(non-sparse) binary key s ∈ {0, 1}n and each element of the bootstrapping key
is a GGSW encryption of bit sj , 1 ≤ j ≤ n.

FFT-based external product. Each external product is performed as follows. The
input accumulator is a GLWE ciphertext; i.e., a vector of k+1 torus polynomials
modulo XN + 1 with coefficients of pacc bits. We fix k = 1, N = 1024 and
pacc = 64. Each torus polynomial is decomposed into ℓ integer polynomials with
coefficients in {−B/2, . . . , B/2} where we pick ℓ = 3 and B = 2β = 28. We
then apply a radix-2 negacyclic FFT to every one of these integer polynomials,
resulting in a matrix of ℓ(k+1) complex arrays in CN/2. We easily compute the
tensor

T = (X ãj − 1) · bsk[j]
on the fly since the FFT coefficients of X ãj are just cyclic powers of eiπ/N and
can be derived from the twiddle factors of the FFT that are already precomputed
and stored. Applying a complex matrix-tensor product then gives us k+1 arrays
in CN/2, which are converted back to torus polynomials in the standard domain
by applying a radix-2 backward FFT and rounding. The k + 1 polynomials are
then added up to the accumulator modulo 2pacc = 264, which gives the output
value of the accumulator.

Running time. Instrumenting zlib with this setting allows us to measure the
average number of clock cycles timeXP(1, 2) required to perform one external
product on a reference architecture. The total running time of the blind rotation
is then

timeBR(1, 2) = n · timeXP(1, 2)

where we fix n = 640. This particular setting for n,N, k, ℓ, β, pacc complies with
a parameter set often used in implementations of TFHE.

3 Available at https://bitbucket.org/malb/lwe-estimator/src/master/.

https://bitbucket.org/malb/lwe-estimator/src/master/


Output variance. We neglect the approximation errors that are due to the use
of 64-bit floating-point numbers in FFT conversions and operations in the FFT
domain. One can show that one external product increases the variance of the
accumulated noise by

varXP(1, 2) = (k + 1) ·N ·M2(ℓ, B) · varbsk

where the term

M2(ℓ, B) = ℓ · (B + 2)(B2 −B + 1)

12 · (B + 1)
+ (1− (− 1

B )ℓ) · B2

4 · (B + 1)2

is the second statistical moment of the coefficients of the decomposed integer
polynomials right before their conversion to the FFT domain. Finally, varbsk is
the noise variance of the GGSW ciphertexts that compose the bootstrapping
key. We fix the overall security level to λ = 128 and find varbsk by solving

LWE-security(kN, pacc, 2, var
bsk) = 128

which yields varbsk = 2−50.32. The output variance of the blind rotation is then

varBR(1, 2) = n · varXP(1, 2) .

5.3 Extended Setting

Keeping the same parameters as in the nominal setting, we now generalize it to
arbitrary pairs (d,m) with d ≥ 1 and m ≥ 2.

Extended external product. In comparison with the nominal setting, the only
adaptation in the external product is that the tensor

T = (X ãj − 1) · bsk[j]

is now generalized to

T =
∑

0≤i1,...,id≤m−1
(i1,...,id) ̸=(0,...,0)

(X
∑d

l=1 A(il) ã(h−1)d+l − 1) bsk[(md− 1)(h− 1)+
∑d

l=1 il m
l−1]

which requires md − 1 operations of the form (Xα − 1) · bsk[j] instead of just
one.

Running time. We measure the average number of clock cycles timeXP(d,m)
using zlib and find that

timeXP(d,m) =
(
1 +

(
md − 2

)
·∆

)
· timeXP(1, 2)

with ∆ ≈ 0.1557.



Output variance. The noise variance added by an external product is now

varXP(d,m) = (k + 1) ·N ·M2(ℓ, B) ·
(
md − 1

)
· varbsk =

(
md − 1

)
· varXP(1, 2)

and the output variance of the blind rotation is

varBR(d,m) =
n

d
· varXP(d,m)

However, the value of n can now be decreased slightly due to m ≥ 2. Indeed,
n = 640 was chosen to verify

LWE-security(n, 2, 64, v) = 128

for a certain noise variance v, whereas we now require

LWE-security(n,m, 64, v) = 128

for the same variance v in our extended setting. Based on the data-points col-
lected from LWE Estimator and given in Appendix A, we experimentally find
replacement values for n = n(m) as shown on Table 1.

Table 1. Optimal values of n as a function of m ∈ {2, . . . , 10} for 128-bit security.

m 2 3 4 5 6 7 8 9 10

n(m) 640 610 591 579 569 561 555 549 544

5.4 Finding Optimal Settings

Putting it all together, our generalization gives the following ratios:

varBR(d,m)

varBR(1, 2)
=

n(m)

n(2)
· m

d − 1

d
, (5)

timeBR(d,m)

timeBR(1, 2)
=

n(m)

n(2)
·
1 +

(
md − 2

)
·∆

d
, ∆ ≈ 0.1557 (6)

keysizeBR(d,m)

keysizeBR(1, 2)
=

n(m)

n(2)
· m

d − 1

d
. (7)

We see that the ratios (5) and (7) are identical and we denote them by 2u, while
the ratio (6) is denoted 2v. A given (u, v) pair indicates that a degradation of
the output variance and key size by a factor 2u yields a speedup factor of 2−v.
What we are after is to find the values of (d,m) that provide the most interesting
(u, v) pairs, namely, ones where both u and v are minimized.



Due to the nature of these formulas, we easily see that no optimum exists
for (d,m) that would simultaneously minimize the key size on one hand and the
running time on the other. Instead, we take the set S of pairs (u, v) derived from
all the possible settings (d,m) where d ∈ {1, . . . , 10} and m ∈ {2, . . . , 10}, and
eliminate from S the dominated points; i.e., pairs (u2, v2) ∈ S such that there
exists (u1, v1) ∈ S verifying

(u1 ≤ u2 and v1 < v2) or (u1 < u2 and v1 ≤ v2) .

Dominated points can be safely eliminated since they are strictly less efficient
than other reachable points. We end up with a subset Sbest ⊆ S of non-dominated
points known as the Pareto front of S. The elements of Sbest identify the best
possible trade-offs among all possible settings, and are displayed on Figure 1.

Fig. 1. Points (u, v) obtained from screening m through {2, . . . , 10} and d through
{1, . . . , 10}, and their Pareto front (orange triangles). Other points exist outside of
the displayed range but they are all dominated. The nominal parameters of the blind
rotation are N = 1024, k = 1, ℓ = 3, β = 8 and n = 640.

To conclude our experiments, we see that in addition to the nominal setting
that we have chosen (u = v = 0), two other trade-off points of interest appear:

– (d,m) = (2, 2), for which a 50% increase in key size and output variance
increases speed by 52.5%, and

– (d,m) = (3, 2), for which a 133% increase in key size and output variance
increases speed by 55.1%.

Should one move away from binary keys for security reasons, the next best
trade-off points become

– (d,m) = (1, 3), for which a 91% increase in key size and output variance
decreases speed by 9.22%, and

– (d,m) = (2, 3), for which a 281% increase in key size and output variance
increases speed by 0.4%.



This assumes that the security estimates for ternary keys and m ≥ 4 are left
untouched by an alleged attack against binary keys.

6 Conclusion

This paper adapted the blind rotation as used in the bootstrapping in FHEW
or TFHE to support ternary keys. The resulting implementation is about twice
faster than a previous method by Micciancio and Polyakov and with the same
memory requirements for the bootstrapping keys as in their method. We also
extended the proposed approach to higher radices and generalized it by process-
ing several digits at a time—at the expense of further memory requirements. An
analysis of the various trade-offs provided by the choice of the radix and of the
number of processed digits was provided. In particular, useful trade-offs include
processing 2 or 3 bits concurrently for binary keys and 1 or 2 digits for ternary
keys.

Acknowledgements. We are grateful to Ben Curtis for his help in compil-
ing Tables 2 and 3. We are also grateful to the anonymous referees for useful
comments.

References

1. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.
doi:10.1515/jmc-2015-0016.

2. Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilin-
ear time. In R. Canetti and J. A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages
1–20. Springer, 2013. doi:10.1007/978-3-642-40041-4_1.

3. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polyno-
mial error. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages
297–314. Springer, 2014. doi:10.1007/978-3-662-44371-2_17.

4. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast
homomorphic evaluation of deep discretized neural networks. In H. Shacham and
A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume
10993 of Lecture Notes in Computer Science, pages 483–512. Springer, 2018. doi:
10.1007/978-3-319-96878-0_17.

5. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. ACM Transactions on Computa-
tion Theory, 6(3):13:1–13:36, 2014. Earlier version in ITCS 2012. doi:10.1145/

2633600.

6. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE.
In M. Naor, editor, 5th Innovations in Theoretical Computer Science (ITCS 2014),
pages 1–12. ACM Press, 2014. doi:10.1145/2554797.2554799.

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2554797.2554799


7. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–
91, 2020. doi:10.1007/s00145-019-09319-x.

8. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping en-
ables efficient homomorphic inference of deep neural networks. In S. Dolev et al.,
editors, Cyber Security Cryptography and Machine Learning (CSCML 2021), vol-
ume 12716 of Lecture Notes in Computer Science, pages 1–19. Springer, 2021.
doi:10.1007/978-3-030-78086-9_1.

9. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryp-
tion in less than a second. In E. Oswald and M. Fischlin, editors, Advances in Cryp-
tology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 617–640. Springer, 2015. doi:10.1007/978-3-662-46800-5_24.

10. Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie. Structural
lattice reduction: Generalized worst-case to average-case reductions and homomor-
phic cryptosystems. In J.-S. Coron and M. Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 528–558. Springer, 2016. doi:10.1007/978-3-662-49896-5_19.

11. Craig Gentry. Computing arbitrary functions of encrypted data. Communications
of the ACM, 53(3):97–105, 2010. Earlier version in STOC 2009. doi:10.1145/

1666420.1666444.
12. Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully

homomorphic encryption. In M. Fischlin et al., editors, Public Key Cryptography
– PKC 2012, volume 7293 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2012. doi:10.1007/978-3-642-30057-8_1.

13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In R. Canetti and J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 75–92. Springer,
2013. doi:10.1007/978-3-642-40041-4_5.

14. Marc Joye. Guide to fully homomorphic encryption over the [discretized] torus.
Cryptology ePrint Archive, Report 2021/1402, 2021. https://ia.cr/2021/1402.

15. Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryptosys-
tems. In M. Brenner et al., editors, 9th Workshop on Encrypted Computing & Ap-
plied Homomorphic Cryptography (WAHC 2021), pages 17–28. ACM Press, 2021.
doi:10.1145/3474366.3486924.

16. Ronald L. Rivest, Len Adleman, and Michael L. Detouzos. On data banks and
privacy homomorphisms. In R. A. DeMillo et al., editors, Foundations of Secure
Computation, pages 165–179. Academic Press, 1978. Available at https://people.
csail.mit.edu/rivest/pubs.html#RAD78.

17. Tanping Zhou, Xiaoyuan Yang, Longfei Liu, Wei Zhang, and Ningbo Li. Faster
bootstrapping with multiple addends. IEEE Access, 6:49868–49876, 2018. doi:

10.1109/ACCESS.2018.2867655.

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://ia.cr/2021/1402
https://doi.org/10.1145/3474366.3486924
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://doi.org/10.1109/ACCESS.2018.2867655
https://doi.org/10.1109/ACCESS.2018.2867655


A Tables

Although for higher radices the number of external products remains equal to
n, the value of n is a decreasing function of m. Playing with LWE Estimator, at
a security level of 128 bits, we get the following tables.

Table 2. LWE dimension n as a function of m for different values for the noise standard
deviation σ, for q = 232

σ
m

2 3 4 5 6 7 8 9 10

−30 1208 1176 1160 1152 1136 1128 1120 1120 1112
−29 1168 1144 1120 1112 1104 1088 1088 1080 1072
−28 1136 1104 1088 1072 1064 1056 1048 1040 1040
−27 1096 1064 1048 1032 1024 1016 1008 1000 1000
−26 1056 1024 1008 1000 984 976 968 968 960
−25 1016 992 968 960 952 944 936 928 920
−24 976 952 936 920 912 904 896 888 880
−23 944 912 896 880 872 864 856 848 848
−22 904 872 856 848 832 824 816 816 808
−21 864 840 816 808 800 784 784 776 768
−20 824 800 784 768 760 752 744 736 728
−19 792 760 744 728 720 712 704 696 696
−18 752 720 704 688 680 672 664 664 656
−17 712 680 664 656 640 632 632 624 616
−16 672 648 624 616 608 600 592 584 576
−15 640 608 592 576 568 560 552 544 544
−14 600 568 552 536 528 520 512 512 504
−13 560 528 512 496 488 480 472 472 464
−12 528 496 472 464 456 448 440 432 424
−11 488 456 432 424 416 408 400 392 392
−10 448 416 400 384 376 368 360 352 352
−9 408 376 360 344 336 328 320 320 312
−8 376 336 320 312 296 288 288 280 272
−7 336 304 280 272 256 256 248 240 240
−6 296 264 240 232 224 216 208 208 200



Table 3. LWE dimension n as a function of m for different values for the noise standard
deviation σ, for q = 264

σ
m

2 3 4 5 6 7 8 9 10

−62 2424 2392 2376 2368 2352 2344 2336 2336 2328
−61 2384 2360 2336 2328 2320 2304 2304 2296 2288
−60 2344 2320 2304 2288 2280 2272 2264 2256 2248
−59 2304 2280 2264 2248 2240 2232 2224 2216 2208
−58 2272 2240 2224 2208 2200 2192 2184 2176 2176
−57 2232 2200 2184 2176 2160 2152 2144 2144 2136
−56 2192 2168 2152 2136 2128 2120 2112 2104 2096
−55 2152 2128 2112 2096 2088 2080 2072 2064 2056
−54 2120 2088 2072 2056 2048 2040 2032 2024 2024
−53 2080 2056 2032 2024 2016 2000 2000 1992 1984
−52 2048 2016 2000 1984 1976 1968 1960 1952 1952
−51 2008 1976 1960 1952 1936 1928 1920 1912 1912
−50 1968 1944 1920 1912 1896 1888 1880 1880 1872
−49 1928 1904 1888 1872 1864 1856 1848 1840 1832
−48 1888 1864 1848 1832 1824 1816 1808 1800 1792
−47 1856 1824 1808 1792 1784 1776 1768 1760 1760
−46 1816 1784 1768 1760 1744 1736 1728 1728 1720
−45 1776 1752 1728 1720 1712 1696 1696 1688 1680
−44 1736 1712 1696 1680 1672 1664 1656 1648 1640
−43 1704 1672 1656 1640 1632 1624 1616 1608 1608
−42 1664 1640 1616 1608 1600 1592 1584 1576 1568
−41 1624 1600 1584 1568 1560 1552 1544 1536 1528
−40 1592 1560 1544 1528 1520 1512 1504 1496 1496
−39 1552 1520 1504 1488 1480 1472 1464 1456 1456
−38 1512 1480 1464 1456 1440 1432 1424 1424 1416
−37 1472 1448 1424 1416 1408 1400 1392 1384 1376
−36 1432 1408 1392 1376 1368 1360 1352 1344 1336
−35 1400 1368 1352 1336 1328 1320 1312 1304 1304
−34 1360 1336 1312 1304 1296 1280 1280 1272 1264
−33 1320 1296 1280 1264 1256 1248 1240 1232 1224
−32 1288 1256 1240 1224 1216 1208 1200 1192 1192
−31 1248 1216 1200 1184 1176 1168 1160 1152 1152
−30 1208 1176 1160 1152 1136 1128 1120 1120 1112
−29 1168 1144 1120 1112 1104 1088 1088 1080 1072
−28 1136 1104 1088 1072 1064 1056 1048 1040 1040
−27 1096 1064 1048 1032 1024 1016 1008 1000 1000



−26 1056 1024 1008 1000 984 976 968 968 960
−25 1016 992 968 960 952 944 936 928 920
−24 976 952 936 920 912 904 896 888 880
−23 944 912 896 880 872 864 856 848 848
−22 904 872 856 848 832 824 816 816 808
−21 864 840 816 808 800 784 784 776 768
−20 824 800 784 768 760 752 744 736 728
−19 792 760 744 728 720 712 704 696 696
−18 752 720 704 688 680 672 664 664 656
−17 712 680 664 656 640 632 632 624 616
−16 672 648 624 616 608 600 592 584 576
−15 640 608 592 576 568 560 552 544 544
−14 600 568 552 536 528 520 512 512 504
−13 560 528 512 496 488 480 472 472 464
−12 528 496 472 464 456 448 440 432 424
−11 488 456 432 424 416 408 400 392 392
−10 448 416 400 384 376 368 360 352 352
−9 408 376 360 344 336 328 320 320 312
−8 376 336 320 312 296 288 288 280 272
−7 336 304 280 272 256 256 248 240 240
−6 296 264 240 232 224 216 208 208 200


	Blind Rotation in Fully Homomorphic Encryption with Extended Keys

