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7.1. Introduction

A positive integer q is said to be prime if q > 1 and if q has no positive divisors
except 1 and q.

Numerous cryptographic primitives rely on prime numbers, a good representative
being the RSA cryptosystem used for encryption or digital signatures. LetM denote
the message space. In its simplest form, the RSA cryptosystem requires two distinct
primes p and q to form a modulus N = pq, an exponent e that is co-prime with
λ(N) = lcm(p−1, q−1),1 and an injective (randomized) padding function µ :M→
ZN . There is also an exponent d satisfying ed ≡ 1 (mod λ(N)). Modulus N and ex-
ponent e are made public while exponent d is kept private. A message m ∈ M is en-
crypted as C $← µ(m)e mod N . The secrecy of primes p and q is primordial to guar-
antee the security as they allow recovering d← e−1 mod lcm(p− 1, q − 1). Indeed,
from d, the plaintext message m can be recovered in two steps as m∗ ← Cd mod N
and m ← µ−1(m∗). For digital signatures, the roles of e and d are exchanged. For a
deterministic padding function µ, the signature σ on a message m ∈ M is given by

1. LCM denotes the ‘lowest common multiple’; in particular, lcm(p− 1, q− 1) = (p− 1)(q−
1)/ gcd(p− 1, q − 1).
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σ ← µ(m)d mod N . The validity of σ is then verified by checking that σe ≡ µ(m)
(mod N) using public exponent e.

A naïve way to produce an n-bit prime consists in generating an odd n-bit integer
and testing it for primality. The process is iterated until a prime is found. The expected
number of trials is asymptotically equal to (ln 2n)/2 ≈ 0.347n. Doing so, generating
a random 1024-bit prime thus requires about 355 trials on average. The naïve prime
generator can be made more efficient by selecting n-bit integers that are already co-
prime with small primes, instead of just being co-prime with 2. For example, one can
define Π as the product of the first 10 primes, Π = 2 · 3 · · · · · 29, and randomly select
an n-bit prime candidate q satisfying gcd(q,Π) = 1. The expected number of trials
before a prime is found then drops heuristically to (ln 2n)φ(Π)

Π ≈ 0.109n, where φ
denotes Euler’s totient function. For 1024-bit primes, this amounts to about 112 trials.
The complexity can be further reduced by including more primes in the definition
of Π . This methodology however requires an efficient way to generate random n-bit
integers co-prime with Π .

The rest of this chapter is devoted to describing efficient methods for producing
random primes in a prescribed interval along those lines:

1) A prime candidate q ∈ [qmin, qmax] is constructively generated so as to be co-
prime with Π , a product of many (small) primes;

2) q is tested for primality. If q is not prime then it is updated in a way that its up-
dated value remains co-prime with Π and lies within [qmin, qmax]. This step is repeated
until q is found to be prime.

The output distribution of the primes that are generated also matters. In 2012, two
independent teams of researchers collected RSA public keys from a wide variety of
sources. Quite surprisingly, a non-negligible fraction of the collected RSA moduli
exhibited a common prime factor. Sharing a common factor for non-duplicate RSA
moduli completely compromises the security as calculating their greatest common di-
visor (GCD) reveals the secret factors and thus enables computing the private keys.
These vulnerabilities apparently originated from the use of poor entropy in the gen-
eration of prime numbers p and q forming an RSA modulus N = pq. An important
lesson is to generate RSA keys only after a proper initialization of the source of ran-
domness. In particular, the initial random seed must be fresh and at least twice longer
than the targeted security level.

The performance of algorithms highly depends on the hardware capabilities and
specifics of the architecture implementing them. The methods developed in this chap-
ter target embedded platforms allowing for super-fast evaluation of (modular) addi-
tions/subtractions/multiplications over large integers—which renders other types of
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computations comparatively prohibitive in the absence of integrated hardware to sup-
port these. Examples include high-end smart cards equipped with an arithmetic crypto-
coprocessor. In such a setting, algebraic tricks involving (modular) arithmetic opera-
tions on large numbers are largely preferred over glue instructions such as register
switches, loop control, pointer management, etc.

REMARK. Cryptographic implementations should resist side-channel attacks as
well as fault attacks. The different algorithms presented in this chapter are given
in pseudo-code for the sake of clarity. Actual implementations should however en-
sure full security against these attacks, whose specifics are architecture-dependent.
This de facto excludes schoolbook GCD algorithms, which leak a lot of information
through the observation of their control flow. This chapter also assumes the avail-
ability of a secure cryptographic random number generator for producing uniformly
random integers in a given range.

7.2. Primality Testing Methods

Primality testing has been an active research topic for many years. Computa-
tionally, two types of outputs are distinguished by nature: true primes and probable
primes. The difference rests in the way these are generated. A probable prime (a.k.a.
pseudo-prime) is usually obtained through a compositeness test, which is typically
weaker but faster than a primality test. When such a test declares that a number is
composite, then it is indeed with probability 1. However, if the test finds it to be
prime, it is truly a prime with some probability < 1. Hence repeatedly running the
test gives increasing confidence in the so-generated (probable) prime. Typical exam-
ples of compositeness tests include Fermat’s test, the Solovay–Strassen test, and the
Miller–Rabin test.

There also exist (actual) primality tests, which tell apart prime numbers from com-
posite numbers with a strictly null error probability (e.g., Pocklington’s test and its
elliptic curve analogue, and the Jacobi sum test). These tests are generally more ex-
pensive and intricate to implement.

7.3. Generation of Random Units

Let Z∗
Π denote the set of integers modulo Π that are co-prime with Π . The prime

generation algorithms presented in this chapter require the random selection of an
element k ∈ Z∗

Π , that is, of a unit modulo Π . This section provides an algorithm that
efficiently produces such an element with uniform output distribution. The design is
based on the next two propositions, making use of Carmichael’s function λ. Another
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approach based on quadratic residuosity—simpler but not strictly uniform—is also
described.

DEFINITION.– The Carmichael function λ of an integer Π ≥ 2, λ(Π), is defined as
the smallest positive integer t such that at ≡ 1 (mod Π) for every integer a that is
co-prime with Π .

In other terms, λ(Π) denotes the exponent of the multiplicative group Z∗
Π . Letting

Π =
∏L

i=1 pi
δi with pi prime and δi ≥ 1, it can be shown that

λ(Π) = lcm(λ(p1
δ1), . . . , λ(pL

δL))

where

λ(pi
δi) =

{
2δi−2 if pi = 2 and δi > 2

pi
δi−1(pi − 1) otherwise

.

PROPOSITION.– Let Π > 1 and let k be an integer modulo Π . Then k ∈ Z∗
Π if and

only if kλ(Π) ≡ 1 (mod Π).

Proof. This follows from the definition of Carmichael’s function. If k ∈ Z∗
Π then

kλ(Π) ≡ 1 (mod Π) since λ(Π) is the exponent of Z∗
Π . Conversely, if kλ(Π) ≡ 1

(mod Π) then, for all primes pi dividing Π , it follows that kpi−1 ≡ 1 (mod pi) ⇐⇒
gcd(k, pi) = 1, and thus gcd(k,Π) = 1 ⇐⇒ k ∈ Z∗

Π .

PROPOSITION.– Let k, r be integers modulo Π and assume that gcd(r,Π) = 1. Then

[k + r(1− kλ(Π)) mod Π] ∈ Z∗
Π . [7.1]

Proof. Let
∏

i pi
δi denote the prime factorization of modulus Π . Define ω(k, r) :=

[k + r(1− kλ(Π)) mod Π] ∈ ZΠ . Let pi be a prime factor of Π . Suppose that pi | k
then ω(k, r) ≡ r ̸≡ 0 (mod pi) since gcd(r, pi) divides gcd(r,Π) = 1. Suppose
now that pi ∤ k then kλ(Π) ≡ 1 (mod pi) and so ω(k, r) ≡ k ̸≡ 0 (mod pi).
Therefore for all primes pi | Π , one has ω(k, r) ̸≡ 0 (mod pi) and thus ω(k, r) ̸≡ 0
(mod pi

δi), which, invoking Chinese remaindering, concludes the proof.

Benefiting from these facts, the unit generation method illustrated in Algorithm 8.1
can be devised.
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Algorithm 7.1: Unit generation algorithm
Input: Π ≥ 2 and λ(Π)
Output: a uniformly random unit k ∈ Z∗

Π

1 Select k $← [1, Π) uniformly at random
2 Set U ← (1− kλ(Π)) mod Π
3 if (U ̸= 0) then
4 Select r $← [1, Π) uniformly at random
5 Set k ← k + rU (mod Π)
6 Go to Step 2
7 end if
8 return k

As computed, the generation of units is self-correcting in the following sense: as
soon as k is co-prime with some factor of Π , it remains co-prime with this factor after
the updating step k ← k + rU (mod Π). This follows from Eq. (8.1). What hap-
pens in simple words is that, viewing k as the vector of its residues k mod pi

δi for all
pi

δi | Π (i.e., an RNS2 representation of k based on Π), non-invertible coordinates of
k are continuously re-randomized until invertibility is reached for all of them. This en-
sures that the output distribution is strictly uniform, provided that the random number
generator outputs uniform integers over [1, Π).

The above algorithm is particularly well suited to devices (e.g., smart cards)
equipped with a co-processor to efficiently perform multiplications modulo Π . This
usually requires Π to lie within a certain range of supported values. For larger values
of Π , the generation of units can be adapted as follows. Π is written as a product of
pairwise co-prime integers Πi ≥ 2,

Π =

w∏
i=1

Πi with gcd(Πi, Πj) = 1 for i ̸= j .

Algorithm 8.1 is then run with every couple (Πi, λ(Πi)) as inputs. This yields a se-
quence of M units (k1, . . . , kw) where ki ∈ Z∗

Πi
. There is no need to strictly apply

2. RNS stands for ‘residue number system’; this system represents integers by their values
modulo several pairwise co-prime integers.
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Chinese remaindering to get a unit modulo Π from (k1, . . . , kw) as long as the result-
ing value is invertible modulo Π . For example, one can compute iteratively

{
K0 = k1

Kj = Πj+1Kj−1 +
(∏j

i=1 Πi

)
kj+1 for 1 ≤ j ≤ w − 1

[7.2]

and set k ← Kw−1 mod Π . Letting ϵi := Π
Πi
∈ Z, it can be verified that the so-

defined k satisfies k ≡ ϵi ki (mod Πi) and thus (k mod Πi) ∈ Z∗
Πi

since ϵi, ki ∈
Z∗
Πi

. It can also be verified that k remains uniform over Z∗
Π , again assuming a uniform

random number generator.

A different method to get units is to leverage the properties of quadratic residu-
osity. Given an odd prime pi, an integer −V is by definition a quadratic non-residue
modulo pi if there exists no integer t such that −V ≡ t2 (mod pi). This implies that
t2+V is co-prime with pi for every integer t. Let Π ′ =

∏
i pi

δi with pi prime, pi ̸= 2,
and δi ≥ 1. With (Π ′, V ) precomputed such that −V is a quadratic non-residue for
every prime pi | Π ′, a unit k ∈ Z∗

Π′ can be simply obtained as

k = (r2 + V ) mod Π ′ for some random r
$← [0, Π ′) .

Such a unit k is not uniform over Z∗
Π . For each prime-power piδi , about half of the

units in Z∗
pi

δi
are covered. Hence, if Π ′ is made of w prime-power divisors piδi , about

a subset of φ(Π ′)/2w units can be attained instead of the full set of φ(Π ′) possible
units. This can be mitigated by considering a product of J independent units; namely,

k =

J∏
j=1

(
rj

2 + V
)
mod Π ′ where rj

$← [0, Π ′) .

In practice, the value of J is typically set to 6, which results in a min-entropy loss of
at most 0.11 bits.

7.4. Generation of Random Primes

This section describes a generic sieving algorithm for generating a random prime q
in some arbitrary interval [qmin, qmax]. The algorithm requires as inputs a smooth in-
teger Π = 2δΠ ′ (with δ ≥ 0 and Π ′ odd) and a bound cmax ≥ 1 on a counter that
indicates the maximum number of re-uses of a fresh unit. Optionally, it further re-
quires (i) the Carmichael’s value λ(Π) for generating (uniform) units modulo Π , and
(ii) a pre-computed unit U ∈ Z∗

Π and/or a quadratic non-residue −V modulo Π ′ for
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Algorithm 7.2: Prime generation algorithm in [qmin, qmax]

Input: Π , cmax [optionally: λ(Π), U and V ]
Output: A random prime q ∈ [qmin, qmax]

1 Set c← 0 and M ←
⌊
qmax−qmin

Π

⌋
2 repeat
3 if (c = 0) then
4 Generate k

$← Z∗
Π

5 else
6 Sample υ ← Z∗

Π

7 Update k as k ← kυ mod Π

8 end if
9 Increment c as c← c+ 1

10 if (c ≥ cmax) then c← 0

11 Set L← qmin +
(
(k − qmin) mod Π

)
12 Draw a random integer m $← [0,M ] and set q ← mΠ + L

13 until (q ≤ qmax) and (T(q) = 1)
14 return q

quickly sampling units in Z∗
Π . It also assumes some fast (pseudo-)primality testing

function T which returns 1 when a candidate q is found to be prime, and 0 otherwise.

The repeat loop involves the generation of a (uniform) unit modulo Π when c = 0;
this can for example be achieved using Algorithm 8.1. If c ̸= 0, unit k ∈ Z∗

Π is updated
as another unit k ∈ Z∗

Π (the product of two units is a unit). A prime candidate q is next
formed. Remark that by construction q is co-prime with Π since q ≡ k (mod Π) and
k ∈ Z∗

Π . The process is iterated until q ∈ [qmin, qmax] is declared prime.

. . .

qmin qmax

q
m

in

q
m

in
+

Π

q
m
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Π
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Figure 7.1: Output domain
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Parameter cmax controls the distribution of the output primes. In the case of cmax =
1, a fresh unit k ∈ Z∗

Π is generated for each tested prime candidate. If this unit is
selected uniformly at random (e.g., with Algorithm 8.1), the prime q returned by Al-
gorithm 8.2 is uniformly distributed on the set of primes in [qmin, qmax] (provided that
T is correct in identifying q as a prime).

Larger values for cmax enable various trade-offs running-time/uniformity for hav-
ing units in Z∗

Π . Several methods are available:
– The simplest way to update k consists in predetermining a fixed unit U ∈ Z∗

Π

and replacing k with k ← kU mod Π (i.e., υ = U ).
– Write Π = 2δΠ ′ with δ ≥ 0 and Π ′ odd. A random unit u is first sampled in

Z∗
Π′ as u← (r2+V ) mod Π ′ for a random integer r $← [0, Π ′). If δ = 0 then υ = u.

Otherwise, u ∈ Z∗
Π′ is extended as a unit υ in Z∗

Π as

υ ← u+
(
2t+ 1− lsb(u)

)
Π ′ for a random integer t $← [0, 2δ−1 − 1] .

It can be checked that υ ∈ Z∗
Π since υ ≡ u (mod Π ′) and u ∈ Z∗

Π′ , υ ≡ 1 (mod 2),
and υ ∈ [1, Π). Next, unit k ∈ Z∗

Π is updated as another unit k ∈ Z∗
Π as k ←

kυ mod Π .

The second method offers the advantage of being probabilistic. The output distribution
for the resulting primes is expected to be statistically closer to the uniform distribution.
Note also that the two methods can be combined.

7.4.1. Probable primes

The choice of function T dictates the type of primes that are generated. For proba-
bilistic tests T, numbers that pass the test are called probable primes or pseudo-primes
as there is a non-zero probability that a composite number is falsely classified as prime.
An example of such a function T is Fermat’s test: T(q) = 1 if aq−1 ≡ 1 (mod q) for
some random base a > 1. Miller–Rabin is usually preferred as it is more discrimina-
tive. The Miller–Rabin test writes (odd) prime candidate q as q = 2Dq′ + 1 with q′

odd and returns T(q) = 1 if for some random base a > 1, it holds that
1) aq

′ ≡ 1 (mod q), or

2) a2
dq′ ≡ −1 (mod q) for some 0 ≤ d < D.

Let P (n, t) denote the probability that an n-bit odd integer is composite if it suc-
cessfully passes t iterations of the Miller–Rabin test. It can be shown that P (n, 1) ≤
n242−

√
n for all n ≥ 2, and P (n, t) ≤ 41−tP (n, 1)/(1 − P (n, 1)) for every n ≥ 2,

t ≥ 2. Stronger estimates for P (n, t) are provided in the next table.

Hence, by defining function T as the repetition of Miller–Rabin with t random
bases a, an odd composite n-bit integer q will be incorrectly declared prime with
probability at most P (n, t). From Table 8.1, it turns out that P (n, t) is already < 2−80

with t = 2 Miller–Rabin trials for prime candidates of bit-length n ≥ 600.
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n\t 1 2 3 4 5 6 7 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 11 25 34 41 47 52 57 61 65 69
250 14 29 39 47 54 60 65 70 75 79
300 19 33 44 53 60 67 73 78 83 88
350 28 38 48 58 66 73 80 86 91 97
400 37 46 55 63 72 80 87 93 99 105
450 46 54 62 70 78 85 93 100 106 112
500 56 63 70 78 85 92 99 106 113 119
550 65 72 79 86 93 100 107 113 119 126
600 75 82 88 95 102 108 115 121 127 133

Table 7.1: Lower bounds for − log2 P (n, t)

The Miller–Rabin test can also be coupled with the Lucas test.

7.4.2. Provable primes

Deterministic tests T guarantee that the tested number is prime. They are however
not truly practical. An alternative is to rely on methods derived from Pocklington’s
criterion. Unlike the Fermat’s or Miller–Rabin tests, those methods provide sufficient
conditions for primality. This is exemplified by the next proposition.

PROPOSITION.– Let p > 2 be an odd prime and let q = 2rp + 1 for some positive
integer r ≤ p2 + p+ 1. If there exists an integer a such that

(i) aq−1 ≡ 1 (mod q) and a2r ̸≡ 1 (mod q)

(ii) r = up+ s for some 1 ≤ s < p and u odd

then q is prime.

Proof. Suppose that q = 2rp + 1 is composite. Hence, it must have an odd prime
divisor q0 and so can be written as q = q0q1 where q1 = q/q0 is odd. Assume that
aq−1 ≡ 1 (mod q) and a2r ̸≡ 1 (mod q) for some integer a. Define b = a2r mod q0.
From q0 | q, this yields bp ≡ 1 (mod q0) with b ̸≡ 1 (mod q0). Further, q0 being
prime, it also holds that bq0−1 ≡ 1 (mod q0). Lagrange’s theorem and the primality
of p imply that p < q0 − 1 and in turn that p | (q0 − 1); see Exerc. 4. Therefore,
prime q0 must be of the form q0 = 2xp + 1 for some integer x ≥ 1. As a result, co-
factor q1 satisfies q1 = q mod (q0 − 1) = (2rp + 1) mod 2xp = 2(r mod x)p + 1.
Letting y = r mod x, the product q = q0q1 then leads to q = 2(2xyp+ x+ y)p+ 1
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and so r = (2xy)p + (x + y), which contradicts the parity of u := 2xy. Note that
s := x+ y verifies 1 ≤ s < p since x+ y = x+ (r mod x) < 2x = (q0 − 1)/p and
q0 ≤

√
q ≤

√
2(p2 + p+ 1)p+ 1 < p2 for p > 2.

This proposition suggests a constructive method for generating (non-uniform)
provable primes. One starts with a prime p and—provided that Conditions (i) and
(ii) are met—obtains a prime q = 2(up + s)p + 1 that is about 2 to 3 times longer.
Iterating the process eventually leads to a prime of the desired length. The initial
prime can be chosen as any integer in the range [2, 232) that successfully passes the
Miller–Rabin test with the three bases (2, 3, 61); all those integers are known to be
prime.

In order to increase the likelihood that q = 2rp + 1 with r = up + s verifies
Conditions (i) and (ii) and so is actually a prime, it is constructed in a way to be
automatically co-prime with many small primes. Specifically, let Π ′ ≤ p2 + p + 1

be an odd smooth integer, with p ∤ Π ′. If r ≡ k − 1
2p (mod Π ′) for some k

$←
Z∗
Π′ , it follows that q mod 2 = 1 and q ≡ 2pk (mod Π ′), and thus gcd(q, 2Π ′) =

gcd(q,Π ′) = 1 since 2pk ∈ Z∗
Π′ .

7.5. RSA Key Generation

An RSA modulus N = pq is the product of two large prime numbers p and q.
If ℓ denotes the bit-length of N then, for some 1 < ℓ0 < ℓ, p must lie in the range[⌈
2ℓ−ℓ0− 1

2

⌉
, 2ℓ−ℓ0

]
and q in the range

[⌈
2ℓ0−

1
2

⌉
, 2ℓ0

]
so that 2ℓ−1 < N = pq < 2ℓ.

For security reasons, so-called balanced moduli are generally preferred, which means
ℓ = 2ℓ0. This corresponds to primes p and q being drawn at random in the interval
[qmin, qmax] where qmin =

⌈
2ℓ0−

1
2

⌉
and qmax = 2ℓ0 . Furthermore, for an RSA modulus

N = pq, the primes p and q being generated must verify the condition gcd(p−1, e) =
gcd(q − 1, e) = 1 for a selected public exponent e. Matching private exponent d is
given by an integer that is congruent to e−1 modulo lcm(p−1, q−1); in practice, d is
often set to d← e−1 mod (p− 1)(q − 1).

NOTE.– A reminiscence of history is the use of so-called safe, strong, or X9.31 RSA
primes. The reason of using such primes was to prevent certain classes of attacks. In
particular, they were introduced to better resist cycling attacks and the (p − 1) and
(p + 1) factoring attacks. Cyclic attacks were shown to have a negligible chance to
succeed, whatever the form of the RSA primes. The (p − 1) and (p + 1) factoring
attacks are now obsolete owing to new factorization algorithms—in particular, the
elliptic curve method (ECM). It is therefore recommended to generate random RSA
primes rather than special primes.

By construction, the prime generation algorithms of Section 8.4 output a prime
candidate q ∈ [qmin, qmax] such that q ≡ k (mod Π) for some random unit k ∈ Z∗

Π .
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The product of primes, Π =
∏

i pi, is chosen so as to minimize the ratio φ(Π)/Π
subject to Π < qmax − qmin. Euler’s totient function φ(Π) represents the group order
(i.e., the number of elements) of Z∗

Π . The minimality of φ(Π)/Π lowers the expected
number of trials before a prime is identified. This is achieved by ensuring that Π
contains a maximum number of distinct primes and that these primes are as small
as possible. For example, for the generation of 1024-bit RSA primes, one can select
Π = 2 · 3 · 5 · · · 739 as the product of the first 131 primes, namely

Π1024 = 0x0590 bff0 e1e4 97d0 1ec5 6374 d841 7ae5

706f dfbe 2424 0db0 fb6a d6fa d3f4 9804

3820 f879 440d fd1f 4e10 1dea eddf f905

f362 1eae a0ca d6ef 2962 d5fa e132 dd23

5ded c15a 2bd2 360e 3593 649b 3164 675b

0ddc 0aaa 31cb 1cac c71d e317 58b8 e996

6b77 6dcb b5c4 f07b a381 9cfb d89f 8e1c

a30d a823 be6c 6d1e 0c35 46c0 23e6 02f2

Companion parameters are Carmichael’s value λ(Π1024) and quadratic non-residue
−V1024 modulo Π1024/2. One has λ(Π1024) = 0x0009220e37a82cbb6007a9de

e07de852b1fd11d7594688264f7f40e71355f33b 7ebfc100. Observe that the
bit-length of λ(Π1024) is much smaller than that of Π1024: |λ(Π1024)|2 = 276 while
|Π1024|2 = 1019. For V1024, one can take

V1024 = 0x005b fdb1 a66b f64b f262 42fc b803 1844

ca3a 2182 ad42 294e 294d 40d7 61e8 552f

2051 4fae 12e2 e3ae 6e1d e402 4b68 4d98

5548 1fd9 c208 fd89 839c ff93 37a3 f8f9

2c16 6dff d1a7 ce2f 3b14 2ca0 8121 68f2

aaa6 e720 a340 2108 7bb9 71a3 5edc 796d

ed2f ef6d 1651 a9bc 6a23 4693 254b 7b2f

1cd1 2053 c4e6 6755 c506 8c07 479c 3310

The private operation in RSA (i.e., decryption or signature generation) can be sped
up through Chinese remaindering: the private operation is carried out modulo each
prime factor of modulus N and these partial results are then recombined. In more
detail, if N = pq and d denotes the private exponent, one defines

dp = d mod (p− 1) , dq = d mod (q − 1) , iq = q−1 mod p

and, given C, computes Cd mod N as CRT(xp, xq) := xq + q
[
iq(xp − xq) mod p

]
from xp ← Cdp mod p and xq ← Cdq mod q. This mode of operation is referred
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to as CRT mode and the private parameters are {p, q, dp, dq, iq}. Compared to the
standard (i.e., non-CRT) mode, the computation time is expected to be quartered.

It remains to demonstrate (i) how to ensure that primes p and q verify the additional
constraint e ∤ (p − 1) and e ∤ (q − 1); (ii) how to get private key d; and (iii) how to
get CRT parameters (dp, dq, iq). The rest of this section assumes that public exponent
e is a (small) prime as is usually required in the vast majority of embedded imple-
mentations. The most frequently used public exponent is e = 216 + 1; other popular
exponents are e = 3 and e = 17.

The conditions e ∤ (p − 1) and e ∤ (q − 1) when e is a small prime translate into
p, q ̸≡ 1 (mod e). As a reminder, prime p is constructed in a way of being congruent
to some unit k modulo Π; and similarly for prime q. There are two cases to consider:

1) e | Π: In this case, the candidate unit k is initialized as k ← k0+ er (mod Π)

with k0
$← [2, . . . , e − 1] so that k ≡ k0 ̸≡ 0, 1 (mod e). Doing so, the output of

Algorithm 8.1 is a unit k ∈ Z∗
Π such that k ̸≡ 1 (mod e).

2) e ∤ Π: A verification step has then to be explicitly added on the prime candi-
dates; namely, are p, q ̸≡ 1 (mod e)? When applicable, this verification can be done
before or after (pseudo-)primality test T is applied.

Given public exponent e, corresponding private exponent d can be set as any value
that is congruent to e−1 modulo λ(N). In order to avoid computing gcd(p− 1, q− 1),
d is usually defined as d = e−1 mod φ(N) where φ(N) = (p− 1)(q − 1)—observe
that such a d ≡ e−1 (mod λ(N)) since φ(N) = gcd(p− 1, q − 1) · λ(N) ∝ λ(N).
Modular inverses can be obtained via Euclid’s algorithm, which essentially amounts
to compute a GCD. A method better suited to embedded platforms relies on Arazi’s
inversion formula. It enables expressing the inverse of e modulo f as a function of the
inverse of f modulo e. This is stated in the next proposition.

PROPOSITION.– Let e and f be two positive integers. If gcd(e, f) = 1 then

e−1 mod f =
1 + f(−f−1 mod e)

e
. [7.3]

Proof. Define U = e(e−1 mod f) + f(f−1 mod e). Since U ≡ 1 (mod e) and
U ≡ 1 (mod f), it follows that U ≡ 1 (mod ef). Hence, noting that 1 < e + f ≤
U < 2ef , this implies that U = 1 + ef or, equivalently, that e−1 mod f = 1

e

[
(1 +

ef)− f(f−1 mod e)
]
= 1

e

[
1 + f(−f−1 mod e)

]
, as desired.

Taking f := (p − 1)(q − 1), a valid value for private exponent d is therefore
given by d = 1+f(−fe−2 mod e)

e . Note that this requires e being prime. From d, private
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CRT exponents dp and dq are then directly obtained as dp = d mod (p − 1) and
dq = d mod (q − 1). Since p is prime, CRT parameter iq can be computed by an
application of Fermat Little Theorem as iq = qp−2 mod p.

7.6. Exercices
1) Let w pairwise co-prime integers Π1, . . . ,Πw with Πi ≥ 2 and let Π =∏w

i=1 Πi. Let also integers ϵi = Π/Πi. Given w integers k1, . . . , kw with ki ∈ Z∗
Πi

(viewed as elements in [1, Πi − 1]), define{
K0 = k1

Kj = Πj+1Kj−1 +
(∏j

i=1 Πi

)
kj+1 for 1 ≤ j ≤ w − 1

.

Prove that gcd(Kw−1, Π) = 1.
2) Factoring-based constructs typically make use of RSA moduli N = pq with

primes p and q that are congruent to 3 modulo 4. This is for example the case in the
Fiat–Shamir identification protocol. Supposing that candidate prime p (resp. q) always
remains co-prime with some unit modulo Π , how to tweak the unit generation algo-
rithm (Algorithm 8.1) so that the condition p ≡ 3 (mod 4) (resp. q ≡ 3 (mod 4)) is
automatically satisfied? Can this be extended to support Rabin–Williams moduli, that
is, moduli N = pq with p ≡ 3 (mod 8) and q ≡ 7 (mod 8)?

3) A DSA prime is an ℓ-bit prime q of the form q = 1+pr where p is also a prime.
Given p and ℓ, the goal is to find an integer r such that 1+pr is a prime in [2ℓ, 2ℓ−1].
Let Π denote a product of prime numbers with p ∤ Π . Remark that if r ≡ −1/p + k
(mod Π) for some unit k ∈ Z∗

Π then gcd(1 + pr,Π) = 1. Use this observation to
design an efficient generator for DSA primes.

4) The order of an element b ∈ Z∗
q is the smallest positive integer n such that

bn ≡ 1 (mod q). The order of a group is the number of its elements. Lagrange’s
theorem says that the order of an element always divides the order of its group. Let q
be a prime and b ∈ Z∗

q with b ̸≡ 1 (mod q). Prove that bp ≡ 1 (mod q) for some
prime p implies that p | (q − 1).

5) Check that for each prime pi ̸= 2 dividing Π1024 (see Section 8.5), the value
of V1024 is such that V1024 mod pi ∈ {1, 2, 5, 19}. Deduce a more compact represen-
tation for the pair of parameters (Π1024, V1024) and apply Exercise 1 for generating
units modulo Π1024.

6) Let N = pq be an RSA modulus and let (e, d) denote the matching pair of
public/private RSA exponents. Let also dp = d mod (p−1) and dq = d mod (q−1).
Prove that Cd−1 ≡ pyq + qyp (mod N) where yq =

(
p(Cp)e−1

)q−1−dq
mod q and

yp =
(
q(Cq)e−1

)p−1−dp
mod p. Use this relation to derive a formula for computing

Cd mod N from CRT parameters {p, q, dp, dq} (i.e., without using iq). Estimate the
incurred overhead compared to the usual CRT recombination when the public expo-
nent is e = 216 + 1.



16 Embedded Cryptography

7) Given an odd integer D, define the recurrence relation{
x0 = 1

xn = xn−1(2−Dxn−1) mod 22
n

for n ≥ 1
.

Show that xn = D−1 mod 22
n

. Explain how this can be used for quickly evaluating
the integer division in Arazi’s inversion formula (i.e., the integer division by e in
Eq. (8.3)).

8) Find a way to reconstruct private exponent d from dp = d mod (p − 1) and
dq = d mod (q − 1) without computing gcd(p− 1, q − 1).
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NOTES AND FURTHER REFERENCES

Section 8.1 An excellent general reference to prime numbers is [17]. The RSA cryptosystem [40] is named
after its inventors Rivest, Shamir, and Adleman. Widely used RSA padding functions are OAEP [9]
for message encryption and FDH [8] or PSS [10] for digital signatures. The naïve prime generator
is examined in [12]. Its extension using a set of a small primes is described in [32]. Studies of RSA
keys found in the wild were conducted in 2012 in two independent works: [25] and [34]. Setting
the length of the initial seed to twice the security length associated with the RSA modulus is a
NIST recommendation [21, Appendix B.3.2]. Methods for generating numbers from a sequence of
random bits are provided in ISO/IEC 18031 [27]. Discussions regarding side-channel attacks can
be found in [2, 6, 15, 20, 42].

Section 8.2 ANSI standard X9.80 [3] is a very good reference on the different (pseudo-)primality tests
used in public-key cryptography, including for the RSA cryptosystem. An analysis of their strength
under adversarial conditions is provided in [1]. Pocklington’s test appears in [38] and its elliptic
curve variant in [4]. The Jacobi sum test is described in [11].

Section 8.3 A CRT sieve for sampling in Z∗
Π with Π =

∏L
i=1 pi

δi using the Chinese Remainder The-
orem is given in [32, § 4.1]. It however requires pre-computing and storing a large sequence of
constants {θi}1≤i≤L where θi ≡ 1 (mod pi

δi ) and θi ≡ 0 (mod pj
δj ) for j ̸= i. The gen-

eration of units as per Algorithm 8.1 is presented in [31, Fig. 2]. Advantageously, it only takes Π
and λ(Π) as pre-computed inputs. The method building units from a quadratic non-residue −V
modulo Π is presented in [24, § 2.3]. The pre-computed inputs in this case are Π and V .

Section 8.4 The generation of prime numbers is covered in part in several cryptographic standards, in-
cluding ISO/IEC 18032 [28], ANSI X9.80 [3], and IEEE Std 1363 [26]. The general presentation
of Algorithm 8.2 is adapted from [31, Fig. 2]. The main difference is the full coverage of the in-
terval [qmin, qmax] for prime candidates q. Rejection sampling is applied in the case q > qmax. As
presented, Algorithm 8.2 also encompasses the prime generation algorithm given in [24, Alg. 5].
See also [23] for a discussion on the output distribution. The failure probability of the Miller–Rabin
test [39] is discussed in [7, 33]. Explicit functions that bound P (n, t) are provided in [18]. Ta-
ble 8.1 is reproduced from [18, Table 2]. The Lucas test is presented in [5]. The main proposition
in Section 8.4.2 is a slight adaptation from [33, Theorem 1]. It simplifies a special case of [14,
Theorem 11, Sect. III.B.2] used in [16] that requires an extra GCD computation. The corresponding
prime generation methods reduce the number of iterations compared to earlier algorithms based
on Pocklington’s criterion [35, 36]; see also [13, Sect. 3]. Choices of Miller–Rabin bases that are
necessary for proving primality up to a certain bound are given in [29, Sect. 5].

Section 8.5 Good sources of practical information regarding the generation of RSA parameters are [31,
32]. Arguments against the use of special RSA primes are clarified in [41]. Lattice-based attacks
against RSA keys using random primes with too few entropy are reported in [37]. A frequency
analysis of a large collection of public RSA exponents appears in [34]. Insider attacks against RSA

https://ia.cr/2001/007
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key generation and mitigation measures are surveyed in [43]. Arazi’s formula is named after Arazi
who was the first to implement fast modular inversions of RSA exponents on a crypto-coprocessor.
Its application to (small) prime exponents e is described in [22]. Generalizations to arbitrary expo-
nents e and various implementation tricks are detailed in [30].

Section 8.6 1) Constructing a unit modulo Π =
∏

Πi for pairwise co-prime moduli Πi can be done
easily from units modulo each Πi using the Chinese Remainder Theorem (CRT). The improved
method that do not require pre-computing CRT constants is described in [24, Algorithm 3].

2) This is an easy adaptation of Algorithm 8.1. The trick is to include 4 as a factor of Π .

Variable k is initialized with k ← 3+4r for some r $← [0, Π/4). Note that k ∈ [1, Π) and k ≡ 3
(mod 4). Rabin–Williams moduli are supported analogously by including 8 as a factor of Π and
initializing k accordingly.

3) An algorithm for generating DSA primes from units modulo Π is presented in [32, § 7.1].
Algorithms for the generation of safe, strong, and X9.31 RSA primes are also presented therein; see
also [31, § 4.2].

4) For a prime q, the order of Z∗
q is q − 1. Let n denote the order of b ∈ Z∗

q , b ̸≡ 1 (mod q).
Lagrange’s theorem implies that n | (q − 1) and n | p since bn ≡ 1 (mod q). As n cannot be 1,
it follows that n = p and thereby p | (q − 1).

5) Various compact representations for V (including CRT-based representations) are discussed
in [24, Appendix B].

6) The inversion-free CRT technique is demonstrated in [24, Sect. 3]. As presented, it fur-

ther includes a randomness step to blind the input: C′ ← Cr mod N with r
$← Z∗

N and

Cd mod N = C′(py′q + qy′p) mod N where y′q ←
(
pr(C′p)e−1

)q−1−dq mod q and

y′p ←
(
qr(C′q)e−1

)p−1−dp mod p.

7) The algorithm for computing D−1 mod 22
n

is presented in [30, Fig. 1] (note however that
there is a typo: the modulus should read 22

i
). Another algorithm can be found in [19, § 3.2]. As

an application to Eq. (8.3) for an odd integer e, since d := e−1 mod f < 22
F

where F :=

⌈log2 log2 f⌉, d can equivalently be obtained as d ← M · e−1 mod 22
F

with M = (1 +

f(−f−1 mod e)) mod 22
F

.

8) Let d̂ :=
−(edp−1)(edq−1)+1

e
. It is easily verified that ed̂ ≡ 1 (mod (p−1)) and ed̂ ≡ 1

(mod (q − 1)). Hence, d̂ mod (p− 1)(q − 1) is a valid value for private exponent d in standard
mode.
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