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Recently, Yen and Laih (1995) proposed an algorithm to compute
LUC digital signatures quickly. This signature is based on a spe-
cial type of the Lucas sequence,Vk. The authors generalise their
method to any type of Lucas sequence, and extend it to the ‘sister’
Lucas sequence,Uk. As an application, the order of an elliptic
curve overGF (2m) is computed quickly.

Basic facts: In this section, we only include the minimal amount
of background necessary to understand the Letter. For a systematic
treatment, see [2, 3].

Let P and Q be two rational integers, and letα be a root of
x2 − Px + Q = 0 in the fieldQ(

√
D), whereD = P 2 − 4Q is

a non-square. Letβ be the conjugate ofα, i.e. β = ᾱ. TheLucas
sequences{Uk}k≥0 and{Vk}k≥0 with parametersP andQ are
given by

Uk(P, Q) =
αk − βk

α− β
, (1)

Vk(P, Q) = αk + βk . (2)

It can easily be shown that the numbersUi andVi satisfy the
following relations:

Ui+j = UiVj −QjUi−j , (3)

Vi+j = ViVj −QjVi−j . (4)

Fast algorithm for Lucas sequences:Assume you have to compute
Uk(P, Q) andVk(P, Q). If we use the binary expansion ofk, it can
be expressed ask = K0, where

Kj =

n−1X
i=j

ki2
i−j , ki ∈ {0, 1} andkn−1 = 1 .

Hence,

Kj−1 = kj−1 + 2Kj = (Kj + kj−1) + Kj . (5)

Using Eqs. (3) and (4), we obtain

UKj−1 = U(Kj+kj−1)VKj −QKj Ukj−1 , (6)

VKj−1 = V(Kj+kj−1)VKj −QKj Vkj−1 . (7)

At iteration j, let (lj , hj) = (Kj , Kj + 1). From Eq. (7), we
see that bothVlj andVhj are needed to computeVlj−1 , and so to
computeVk. This is not the case forUk, as we shall see in the
following theorem.

Theorem: If k is odd, then the computation ofUk does not require
the computation ofUlj (j ≥ 1).

Proof: Sincek is odd (i.e.k0 = 1), Uk(= Ul0) = Uh1Vl1 −Ql1 .
Thus, only the value ofUh1 is needed. We only need to show
that the value ofUhj−1 can be derived fromUhj . By Eq. (5) and
depending on the value ofkj−1, we have the following cases:

• if kj−1 = 0, then(lj−1, hj−1) = (2lj , lj + hj);

• if kj−1 = 1, then(lj−1, hj−1) = (lj + hj , 2hj).

Hence, ifkj−1 = 0, thenhj−1(= hj + lj = 2lj + 1) is odd
andUhj−1 = Uhj Vlj −Qlj ; otherwise,hj−1(= 2hj) is even and
Uhj−1 = Uhj Vhj .

We now are ready to give the algorithm that we shall extend to
the case wherek is even.

Inputs: k = 2sPn−1
i=s ki2

i−s, (ks = 1)
P, Q

Outputs: (Uk, Vk)

Uh = 1; Vl = 2; Vh = P ; Ql = 1; Qh = 1;
for j from n− 1 to s + 1 by −1

Ql = Ql ∗Qh;
if k[j] == 1 then

Qh = Ql ∗Q;
Uh = Uh ∗ Vh;
Vl = Vh ∗ Vl − P ∗Ql;
Vh = Vh ∗ Vh − 2 ∗Qh

else
Qh = Ql;
Uh = Uh ∗ Vl −Ql;
Vh = Vh ∗ Vl − P ∗Ql;
Vl = Vl ∗ Vl − 2 ∗Ql

fi
endfor
Ql = Ql ∗Qh; Qh = Ql ∗Q;
Uh = Uh ∗ Vl −Ql;
Vl = Vh ∗ Vl − P ∗Ql;
Ql = Ql ∗Qh;
for j from 1 to s

Uh = Uh ∗ Vl;
Vl = Vl ∗ Vl − 2 ∗Ql;
Ql = Ql ∗Ql;

endfor

{Uk(P, Q) = Uh; Vk(P, Q) = Vl}

Fig. 1 Algorithm to compute(Uk, Vk)

Remarks: (i) The presented algorithm is a left-to-right scanning
one. Similar to [1], it is also possible to develop a right-to-left
scanning algorithm, but that requires more temporary memories.
(ii) An implementation with Pari-GP [4] is available at

ftp://math.math.ucl.ac.be/pub/joye/pari/lucas2.gp

Performances:The worst case of the algorithm appears whens =
0. Assumes = 0; then the computation ofUk andVk requires11n

2

multiplications. Furthermore, only five temporary memories (with
the same length as the output) are needed.

If we only want the value ofVk, the algorithm is the same as that
presented on figure 1, except that we do not care of theUh’s. Thus,
the computation ofVk requires9n

2
multiplications in the worst case

with only four temporary memories.

Remarks: (i) Some applications use Lucas sequences with param-
eterQ = ±1. In that case, the computation ofUk andVk requires
less than3n multiplications with three temporary memories.
(ii) If we want Uk andVk modulo a number, the computation can
be improved using the technique of the common-multiplicand [5].
(iii) Moreover, owing to the high regularity of the algorithm, it can
be parallelized.

Applications: Lucas sequences have numerous applications in
number theory. For example, the divisibility properties of theUk ’s
(see [3, pp. 54–59]) allows to test the primality of a numberN
for which the factorization ofN + 1 is partially given. It is also
possible to develop efficient (pseudo) primality tests [6].

In this Letter, we shall see a less-known application. In 1985,
the theory of elliptic curves emerged for cryptographic purposes.
Since many cryptographic protocols [7, 8] require the knowledge
of the order of an elliptic curve overGF (2m), i.e. #E(GF (2m)),
we shall see how it can be computed using Lucas sequences.

Let p be a prime andq = pr. Consider the elliptic curve
E/GF (q) such thatE(GF (q)) has order#E(GF (q)) = q+1−t.
Using Weil theorem, we have

#E(GF (ql)) = ql + 1− αl − βl , (8)

whereα andβ are given from the factorization of1− tT + qT 2 =
(1− αT )(1− βT ).



Let E/GF (2r) be the non-supersingular elliptic curve given by
the Weierstraß equation

E : y2 + xy = x3 + a2x
2 + a6 .

Assumer is small, sot = 2r +1−#E(GF (2r)) can be computed
by exhaustion. Moreover, ifm is a multiple ofl, then the curveE
can be viewed as an elliptic curve overGF (2m). Hence, if we put
l = m/r, then by Eq. (8)

#E(GF (2m)) = 2m + 1− Vl(t, 2
r) ,

whereVl(t, 2
r) is the lth term of the Lucas sequence{Vk} with

parametersP = t andQ = 2r.
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