Efficient computation of full Lucas sequences

M. Joye and J.-J. Quisquater

Indexing terms: Number theory, Cryptography

Recently, Yen and Laih (1995) proposed an algorithm to compute LUC digital signatures quickly. This signature is based on a special type of the Lucas sequence, V_k . The authors generalise their method to any type of Lucas sequence, and extend it to the 'sister' Lucas sequence, U_k . As an application, the order of an elliptic curve over $GF(2^m)$ is computed quickly.

Basic facts: In this section, we only include the minimal amount of background necessary to understand the Letter. For a systematic treatment, see [2, 3].

Let P and Q be two rational integers, and let α be a root of $x^2 - Px + Q = 0$ in the field $\mathbb{Q}(\sqrt{D})$, where $D = P^2 - 4Q$ is a non-square. Let β be the conjugate of α , *i.e.* $\beta = \overline{\alpha}$. The *Lucas sequences* $\{U_k\}_{k\geq 0}$ and $\{V_k\}_{k\geq 0}$ with parameters P and Q are given by

$$U_k(P,Q) = \frac{\alpha^k - \beta^k}{\alpha - \beta} , \qquad (1)$$

$$V_k(P,Q) = \alpha^k + \beta^k \quad . \tag{2}$$

It can easily be shown that the numbers U_i and V_i satisfy the following relations:

$$U_{i+j} = U_i V_j - Q^j U_{i-j} , (3)$$

$$V_{i+j} = V_i V_j - Q^j V_{i-j} . (4)$$

Fast algorithm for Lucas sequences: Assume you have to compute $U_k(P,Q)$ and $V_k(P,Q)$. If we use the binary expansion of k, it can be expressed as $k = K_0$, where

$$K_j = \sum_{i=j}^{n-1} k_i 2^{i-j}, \quad k_i \in \{0,1\} \text{ and } k_{n-1} = 1$$
.

Hence,

$$K_{j-1} = k_{j-1} + 2K_j = (K_j + k_{j-1}) + K_j$$
 (5)

Using Eqs. (3) and (4), we obtain

$$U_{K_{j-1}} = U_{(K_j + k_{j-1})} V_{K_j} - Q^{K_j} U_{k_{j-1}} , \qquad (6)$$

$$V_{K_{j-1}} = V_{(K_j + k_{j-1})} V_{K_j} - Q^{K_j} V_{k_{j-1}} .$$
(7)

At iteration j, let $(l_j, h_j) = (K_j, K_j + 1)$. From Eq. (7), we see that both V_{l_j} and V_{h_j} are needed to compute $V_{l_{j-1}}$, and so to compute V_k . This is not the case for U_k , as we shall see in the following theorem.

Theorem: If k is odd, then the computation of U_k does not require the computation of U_{l_i} $(j \ge 1)$.

Proof: Since k is odd (i.e. $k_0 = 1$), $U_k (= U_{l_0}) = U_{h_1}V_{l_1} - Q^{l_1}$. Thus, only the value of U_{h_1} is needed. We only need to show that the value of $U_{h_{j-1}}$ can be derived from U_{h_j} . By Eq. (5) and depending on the value of k_{j-1} , we have the following cases:

- if $k_{j-1} = 0$, then $(l_{j-1}, h_{j-1}) = (2l_j, l_j + h_j)$;
- if $k_{j-1} = 1$, then $(l_{j-1}, h_{j-1}) = (l_j + h_j, 2h_j)$.

Hence, if $k_{j-1} = 0$, then $h_{j-1}(= h_j + l_j = 2l_j + 1)$ is odd and $U_{h_{j-1}} = U_{h_j}V_{l_j} - Q^{l_j}$; otherwise, $h_{j-1}(= 2h_j)$ is even and $U_{h_{j-1}} = U_{h_j}V_{h_j}$.

Fig. 1 Algorithm to compute (U_k, V_k)

Remarks: (i) The presented algorithm is a left-to-right scanning one. Similar to [1], it is also possible to develop a right-to-left scanning algorithm, but that requires more temporary memories. (ii) An implementation with Pari-GP [4] is available at

ftp://math.math.ucl.ac.be/pub/joye/pari/lucas2.gp

Performances: The worst case of the algorithm appears when s = 0. Assume s = 0; then the computation of U_k and V_k requires $\frac{11n}{2}$ multiplications. Furthermore, only five temporary memories (with the same length as the output) are needed.

If we only want the value of V_k , the algorithm is the same as that presented on figure 1, except that we do not care of the U_h 's. Thus, the computation of V_k requires $\frac{9n}{2}$ multiplications in the worst case with only four temporary memories.

Remarks: (i) Some applications use Lucas sequences with parameter $Q = \pm 1$. In that case, the computation of U_k and V_k requires less than 3n multiplications with three temporary memories.

(ii) If we want U_k and V_k modulo a number, the computation can be improved using the technique of the common-multiplicand [5]. (iii) Moreover, owing to the high regularity of the algorithm, it can be parallelized.

Applications: Lucas sequences have numerous applications in number theory. For example, the divisibility properties of the U_k 's (see [3, pp. 54–59]) allows to test the primality of a number N for which the factorization of N + 1 is partially given. It is also possible to develop efficient (pseudo) primality tests [6].

In this Letter, we shall see a less-known application. In 1985, the theory of elliptic curves emerged for cryptographic purposes. Since many cryptographic protocols [7, 8] require the knowledge of the order of an elliptic curve over $GF(2^m)$, *i.e.* $\#E(GF(2^m))$, we shall see how it can be computed using Lucas sequences.

Let p be a prime and $q = p^r$. Consider the elliptic curve E/GF(q) such that E(GF(q)) has order #E(GF(q)) = q+1-t. Using Weil theorem, we have

$$#E(GF(q^{l})) = q^{l} + 1 - \alpha^{l} - \beta^{l} , \qquad (8)$$

Let $E/GF(2^r)$ be the non-supersingular elliptic curve given by the Weierstraß equation

$$E: y^2 + xy = x^3 + a_2x^2 + a_6$$
.

Assume r is small, so $t = 2^r + 1 - \#E(GF(2^r))$ can be computed by exhaustion. Moreover, if m is a multiple of l, then the curve E can be viewed as an elliptic curve over $GF(2^m)$. Hence, if we put l = m/r, then by Eq. (8)

$$#E(GF(2^m)) = 2^m + 1 - V_l(t, 2^r) ,$$

where $V_l(t, 2^r)$ is the l^{th} term of the Lucas sequence $\{V_k\}$ with parameters P = t and $Q = 2^r$.

Acknowledgments: The authors are grateful to Daniel Bleichenbacher and to Richard Pinch for providing useful informations about Lucas-based cryptosystems.

24 January 1996

M. Joye (UCL Crypto Group, Département de Mathématique (AGEL), Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium)

J.-J. Quisquater (UCL Crypto Group, Département d'Électricité (DICE), Université catholique de Louvain, Place de Levant 3, B-1348 Louvain-la-Neuve, Belgium)

E-mail: joye@agel.ucl.ac.be / jjq@dice.ucl.ac.be

References

- 1 YEN, S.-M., and LAIH, C.-S.: 'Fast algorithms for LUC digital signature computation', *IEE Proc.-Comput. Digit. Tech.*, 1995, **142**, (2), pp. 165–169
- 2 RIESEL, H.: 'Prime numbers and computers methods for factorization' *in* 'Progress in Mathematics' (Birkhäuser, 1985), Vol. 57
- 3 RIBENBOIM, P.: 'The little book of big primes' (Springer, 1991)
- 4 BATUT, C., BERNARDI, D., COHEN, H., and OLIVIER, M.: 'User's guide to PARI-GP', January 1995
- 5 YEN, S.-M., and LAIH, C.-S.: 'Common-multiplicand multiplication and its applications to public key cryptography', *Electron. Lett.*, 1993, **29**, (17), pp. 1583–1584
- 6 POMERANCE, C., SELFRIDGE, J.L., and WAGSTAFF, S.S., JR.: 'The pseudoprimes to 25 · 10⁹', *Math. of Comp.*, 1980, **35**, (151), pp. 1003– 1026
- 7 MENEZES, A.J.: 'Elliptic curve public key cryptosystems' (Kluwer Academic Publishers, 1993)
- 8 MENEZES, A., QU, M., and VANSTONE, S.: 'Draft of IEEE P1363, chapter 6', November 1995