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Efficient computation of full Lucas nputs: k=2° 3" k20, (ko = 1)
P,Q
sequences Outputs: (U, Vi)

Up=1LVi=2V, =P;Q =1Qr=1;

M. Joye and J.-J. Quisquater ]
for 7 from n—1to s+1 by —1

Q1 = Q1 * Qn;
if k[j]==1 then
. Qn = Q% Q;
Indexing terms: Number theory, Cryptography Up = Up * Vp;

Vi=VpxVi—PxQyu
Recently, Yen and Laih (1995) proposed an algorithm to compute Vi =Vh*Vy, —2%Qpn
LUC digital signatures quickly. This signature is based on a spe- else

cial type of the Lucas sequendé,. The authors generalise their
method to any type of Lucas sequence, and extend it to the ‘sister’
Lucas sequencd/,. As an application, the order of an elliptic
curve overGF(2™) is computed quickly. fi

endfor

Q1 =Q1*Qr;Qr = Q1 *Q;
Up =Up Vi — Qu;

Qn = Qu;

Up =Up * Vi — Qu;
Vi =Vhx Vi — PxQy;
Vi=VixVi—2xQ

Basic facts: In this section, we only include the minimal amount

Vi=Vh*xVi — PxQy

of background necessary to understand the Letter. For a systematic Q1= Qi *Qn;
treatment, see [2, 3]. for j from 110 s
Let P and @ be.two ra.tional integers, and let be a root.of glh::‘g’; >§,,VL 2% Q1
z? — Pz + Q = 0 in the fieldQ(v/D), whereD = P? — 4Q is Qu=Qi*Qp;
a non-square. Lef be the conjugate of, i.e. 3 = a. TheLucas endfor
sequences Uy } >0 and {Vi }r>0 with parameters® and @ are {Uk(P, Q) = Un; Vi (P, Q) = Vi}
given by
o _ gt Fig. 1 Algorithm to computéUy, Vi)
P, = — 1
Uk( 7Q) a— ﬁ ) ( )
Vi(P,Q) = o 4+ 8% . (2) Remarks (i) The presented algorithm is a left-to-right scanning

one. Similar to [1], it is also possible to develop a right-to-left
scanning algorithm, but that requires more temporary memories.
(ii) An implementation with Pari-GP [4] is available at

It can easily be shown that the numbérs andV; satisfy the
following relations:

Uiy =UiV; — Q' Ui—j 3
Viesg = ViV = Q' Vi . 4)

ftp://math.math.ucl.ac.be/publ/joye/pari/lucas2.gp

Fast algorithm for Lucas sequencegissume you have to computePerformances: The worst case of the algorithm appears wkea
U (P, Q) andVi (P, Q). If we use the binary expansion bfitcan 0. Assumes = 0; then the computation df}, andV;, requires*2*
be expressed ds= K, where multiplications. Furthermore, only five temporary memories (with
the same length as the output) are needed.

If we only want the value ot/ the algorithm is the same as that
presented on figure 1, except that we do not care offifie. Thus,
the computation oV requires% multiplications in the worst case

Hence, with only four temporary memories.

n—1

Kj = Z kiQi_j7 ki € {O, 1} andkn,l =1.
i=j

Ki1=kj—1+2K; =(K; +kj—1)+ Kj . (5) Remarks (i) Some applications use Lucas sequences with param-
eter@ = +1. In that case, the computation &i. andV}, requires

Using Egs. (3) and (4), we obtain less tharBn multiplications with three temporary memories.

Uk, = U, on, ) Vic, — ij U, . , (6) (i) _If we want Uk andVj moQqu a number, the comp_uta_ltion can
T K. be improved using the technique of the common-multiplicand [5].
Vic; o1 = Vi 4k, ) Vi, = Q7 Vi, (7)  (iii)y Moreover, owing to the high regularity of the algorithm, it can

At iteration j, let (I, h;) = (K;, K; + 1). From Eq.(7), we be parallelized.

see that boterj and Vi, are needed to computé,_, and so to
computeVy. This is not the case fal/i, as we shall see in theAppIications:

X Lucas sequences have numerous applications in
following theorem.

number theory. For example, the divisibility properties of thes
Theorem If k is odd, then the computation 6f, does not require (See [3, pp. 54-59]) allows to test the primality of a numbér
the computation of/;; (j > 1). for which the factorization ofV + 1 is partially given. It is also
possible to develop efficient (pseudo) primality tests [6].
Proof: Sincek is odd (i.e. ko = 1), Ux(= U, ) = Un, Vi, — Q1. In this Letter, we shall see a less-known applicatiqn. In 1985,
Thus, only the value ot/,, is needed. We only need to shov\;he theory of elliptic curves emerged for cryptographlc purposes.
that the value ofJj,, , can be derived front/s,. By Eq. (5) and Since many cryptog_raphlc protocols [7, 8] require the knowledge
depending on the value &f_;, we have the following cases: ~ ©f the order of an elliptic curve over F'(2™), i.e. #E(GF(2™)),
. we shall see how it can be computed using Lucas sequences.

o if ki1 =0,then(lj—, hj—1) = (2,1 + hy); Let p be a prime andy = p". Consider the elliptic curve

o if kj_1=1,then(lj—1,h;—1) = (I; + hy, 2h;). E/GF(q) suchthatZ(GF(q)) has ordest E(GF(q)) = q+1—t.
Hence, ifk;_1 = 0, thenh;_1(= h; +1; = 2l; + 1) is odd Using Weil theorem, we have
andUy,,_, = U, Vi, — Q'; otherwiseh;_1 (= 2h;) is even and
U, }leUh,- V:; bo@ ha=1(= 2hs) . #E(GF(¢) =q¢ +1-d' - 8", €))

j—1



Let E/GF(2") be the non-supersingular elliptic curve given by
the Weierstral3 equation

E:y2+:ry:x3—|—a2x2+a6 .

Assumeris small, s@ = 2" +1—#E(GF(2")) can be computed
by exhaustion. Moreover, ifz is a multiple ofl, then the curve?
can be viewed as an elliptic curve oM&F'(2™). Hence, if we put
I = m/r, then by Eq. (8)

#EGF(2™)=2"+1-V(t,2"),

whereVi(t,27) is thel™ term of the Lucas sequendd; } with
parameters® = t andQ = 2".
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