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The authors show that the cubic curve cryptosystem proposed by.

Chua and Ling can easily be reduced to the cryptosystem of Ral

Williams.

Introduction: At Eurocrypt’96, Meyer and Nller [1] presented a
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new Rabin-type scheme based on elliptic curves. In [2], this syst@iBferences

was reduced to the system of Rabin-Williams [3, 4]. Using the
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also be reduced.

Chua-Ling’s cryptosystem:This cryptosystem is based on a sing

gular cubic curve of the form

Cn(b) : y° = 2° +bz>  (mod n).

To setup the system, each user chooses two large priraedq
both congruent to 11 modulo 12. Then, he publishes the valu
n =pq.

Suppose Alice wants to send a messagdéo Bob. Then she
chooses\ € Z/nZ—{0,+1} and set® = (m?, Am>). Next, she
computes: = A\* mod n andb = (A% — 1)m? mod n, and sends
the ciphertext consisting af, b, zqg = z([2]P), t = (@)
andu = 1sb (¥([2]P)).

To recover the plaintextn, Bob computes the uniqug, sat-
isfying y5 = zf, + bz (mod n) with Jacobi symbok and
Isb u. He setsQ = (zg,yq). LettingQ, = Q mod p and
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Q, = Q mod g, he compute®; , = (xs,p,yip) (¢ = 1,2) such

that[2]P; , = Q, onC,(b) and similarlyP; ,. Next, he computes

I > =yf,x; " (mod p)}. He does the same for the

primeq. Finally, he computesr, = y?,2; ¢ mod p (i € I,)
andm,. So, Bob obtains» using the Chinese Remainder Theorem
suchthatn =m, (mod p)andm =m, (mod q).

:{i:c

Reduction to Rabin-WilliamsSinceP = (m?, Am?) € C,,(b), it

follows that:
_ (3m® 4 2b)° 2
zg = z([2]P) = oemE T 2m* —b (modn), (1)
and
Nm®>=m®+b (modn) . 2

From egns. 1 and 2, we construct the polynomiBls P> €
(Z/nZ)[X] given by

Pi(X) = 4(zg + 2X +b)(X +b) — (3X + 2b),
Pa(X) = X7 — (X + )%

2 2

Sincem” is a root of P1 and P2, m* will be a root of R =
ged(P1,P2). The polynomialR is very likely to be of degree
1 [6]. Solving this polynomial inX gives the value ofn?.

Conclusion: We have shown that we can easily recover the value
of m? from the ciphertext corresponding to a plaintext There-
fore, the Chua-Ling scheme is reduced to the Rabin-Williams cryp-
tosystem.



