
Published in J. Hernando, E. Fernndez-Medina, and M. Malek, Eds, International Conference on Security and Cryptography − SECRYPT 2007, pp. 189-196,
INSTICC Press, 2007.

SECURING OPENSSL AGAINST MICRO-ARCHITECTURAL
ATTACKS

Marc Joye
Thomson R&D France, Technology Group, Corporate Research, Security Laboratory,

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@thomson.net

Michael Tunstall
Department of Electrical & Electronic Engineering, University College Cork, Cork, Ireland

miket@eleceng.ucc.ie

Keywords: RSA, Modular exponentiation, Micro-architectural attacks, Side-channel resistant implementations.

Abstract: This paper presents a version of the 2k-ary modular exponentiation algorithm that is secure against current
methods of side-channel analysis that can be applied to PCs (the so-called micro-architectural attacks). Some
optimisations to the basic algorithm are also proposed to improve the efficiency of an implementation. The
proposed algorithm is compared to the current implementation of OpenSSL, and it is shown that the proposed
algorithm is more robust than the current implementation.

1 INTRODUCTION

Exponentiation algorithms are important for many
public-key cryptographic algorithms, in particular for
computing the modular exponentiation necessary for
RSA (Rivest et al., 1978). It is therefore essential to
ensure that implementations of algorithms requiring
a modular exponentiation are not vulnerable to any
known attacks.

Side-channel attacks can be applied remotely to
a PC, by observing the time taken for a processor
to compute a given function. In addition, they may
observe some micro-architectural features, e.g. the
cache or branch predictor of a processor which is ex-
ecuting the function. This usually requires the exe-
cution of a spy process to observe and manipulate a
processor while it is running. A more detailed de-
scription of different types of side channels that can
be applied to PCs is given in Section 2.

This paper proposes a modified 2k-ary modular
exponentiation algorithm (the notation used in this pa-
per is taken from (Knuth, 2001)). The proposed algo-
rithm is resistant to all currently known side channels
available to an attacker targeting a PC implementa-
tion. The security of this algorithm is analysed in
terms of its side-channel resistance to the attack meth-
ods presented in Section 2, and some further optimi-
sations to the basic algorithm are also presented.

The proposed algorithm is compared to the cur-

rent secure implementation of modular exponentia-
tion used in OpenSSL (OpenSSL, 2007). It is demon-
strated that some bits of the private exponent risk be-
ing revealed if an attacker is able to modify the cache
and observe the effect on the output. The proposed
algorithm is shown to be more robust than the current
OpenSSL implementation.

The rest of this paper is organised as follows.
The different side channels that can potentially be ex-
ploited to reveal secret information are described in
Section 2. The proposed exponentiation algorithm is
described in Section 3, and some further optimisa-
tions are presented in Section 4. A comparison of the
proposed algorithm with the implementation used in
the current version of OpenSSL is presented in Sec-
tion 5. This is followed by our conclusions in Sec-
tion 6.

Notation: The base of a value is determined by a
trailing subscript, which is applied to the whole word
preceding the subscript. For example, FE16 is 254 ex-
pressed in base 16, d = (d`−1,d`−2, . . . ,d0)2 gives a
binary expression for d, and d = (d`−1,d`−2, . . . ,d0)4
gives an expression where each di, for 0≤ i < `, rep-
resents two bits of d.

In all the algorithms described in this paper λ rep-
resents the Carmichael function, where λ(N) is de-
fined for N as the smallest positive integer m such
that am ≡ 1 (mod N) for every integer a that is co-

prime to N. In particular, if N = pq is an RSA mod-
ulus then λ(N) = lcm(p− 1,q− 1). The notation φ
represents Euler’s totient function, where φ(N) equals
the number of positive integers less than N which are
coprime to N. If N = pq is an RSA modulus then
φ(N) = (p−1)(q−1).

2 SIDE-CHANNEL ANALYSIS

There are several different methods of side-channel
analysis that can potentially be applied to an imple-
mentation of the RSA signature scheme. These meth-
ods are summarised below.

2.1 Timing Analysis

The first academic publication of side-channel anal-
ysis was an attack that observed the correlation be-
tween guessed bits of a secret and the time required to
compute an algorithm (Kocher, 1996). The principle
target of the timing analysis described was the RSA
signature scheme. This was extended in (Schindler,
2000) to include the RSA signature scheme when
it is calculated using the Chinese Remainder The-
orem (Knuth, 2001) and Montgomery multiplica-
tion (Montgomery, 1985). These attacks were typi-
cally thought of in terms of smart cards, where it is
trivial to observe the execution time of a naı̈vely im-
plemented process.

It was demonstrated in (Brumley and Boneh,
2003) that timing analysis of the computation of
RSA signatures could be conducted across a network
against complex implementations, such as OpenSSL.
This demonstrated the need to consider the possible
side channels that could be exploited in implementa-
tions of cryptographic algorithms on all platforms.

In this paper it is assumed that the underlying mul-
tiplication algorithm used in the exponentiation algo-
rithm is resistant to timing analysis. For example, if
we consider Montgomery multiplication, which con-
tains a conditional modular subtraction, it is pointed
out in (Hachez and Quisquater, 2000; Walter, 1999a;
Walter, 1999b) that this final operation can be omit-
ted.

2.2 Cache-Based Side-Channel Analysis

A cache is a small, fast RAM memory whose role is
to buffer the lines of Non-Volatile Memory (NVM)
or external RAM being fetched. When a data or in-
struction word is to be fetched from the NVM or ex-
ternal RAM, the CPU will first check whether this
particular word is already in the cache: if yes (this

is a cache hit), the word is fetched directly from the
cache. If, on the contrary, this particular word is not
cached this is a cache miss. The CPU will then fetch
a whole line (e.g. 32 bytes) within which the targeted
word is found. The data in this cache line can then be
accessed rapidly by the CPU, whereas accessing ex-
ternal resources to fetch data takes significantly more
time.

Using the cache as a side channel to attack an im-
plementation of a cryptographic algorithm was first
proposed in (Tsunoo et al., 2003). Several attacks
have since been published using cache access events
as a side channel (Bernstein, 2005; Bertoni et al.,
2005; Osvik et al., 2006) to derive a secret key used
in implementations of block ciphers, such as DES and
AES. These examples are predominately a specific
case of timing analysis, where the total number of
cache misses in an algorithm is used to determine in-
formation on the secret key being used.

Another example of using the cache as a side
channel has been termed trace-driven cache analysis,
and was first described in (Page, 2002). This attack
functions by observing what cache lines are used by a
process computing a cryptographic algorithm. This is
possible as the cache is open to inspection and mod-
ification by all processes being run on a PC. Im-
plementations of attacks that exploit this method of
side-channel analysis against PC implementations of
AES are described in (Acıiçmez and Koç, 2006; Os-
vik et al., 2006).

2.3 Branch Prediction Analysis

Modern chips for PCs include branch prediction to
improve overall performance. This involves the inclu-
sion of a Branch Target Buffer (BTB) and a Branch
Predictor (BP). The BTB is a buffer of limited size
that acts as a cache for storing the addresses of previ-
ously executed branches. The BP is an algorithm that
attempts to predict what branches will be taken, based
on previous observations. If a conditional branch is
present in an algorithm (e.g. an if command) the BP
will attempt to predict the outcome of this branch and
load the relevant instructions into the CPU. If the pre-
diction is correct this increases performance, since the
relevant instructions are available. However, if the
prediction is incorrect the CPU is obliged to fetch the
instructions for the other branch. In (Acıiçmez et al.,
2007c) it is pointed out that this will lead to a differ-
ence in execution time and can therefore be used to
conduct a timing analysis.

More sophisticated attacks are presented
in (Acıiçmez et al., 2007b; Acıiçmez et al., 2007c)
that modify the BTB to produce effects that can leak

information more efficiently than observing the time
taken to compute an algorithm. Indeed, the most
efficient attack described involves closely observing
the BP during the computation of an RSA signature
by using a spy process that modifies the BTB and
observes the subsequent behaviour. This could
allow an attacker to derive the private key from one
signature generation. An implementation of this type
of attack on a modified version of the function used
in OpenSSL to generate RSA signatures is described
in (Acıiçmez et al., 2007b).

Again, it is assumed that the underlying multi-
plication algorithm is not vulnerable to this type of
side-channel analysis, i.e. there are no conditional
branches in the multiplication algorithm and each
multiplication involves exactly the same number of
operations for inputs of a given bit length.

3 SIDE-CHANNEL RESISTANT
2k-ARY EXPONENTIATION

The algorithm proposed in this paper is a modified
2k-ary exponentiation, as defined in (Knuth, 2001).
This is combined with the techniques used to protect
embedded implementations from Differential Power
Analysis (Kocher et al., 1999), where the input val-
ues are multiplied by small random values to mask
the behaviour of the algorithm during execution. This
algorithm is described in Algorithm 1, where ρ is a
small integer that is used to increase the bit length of
N so that it is the same as M∗.

The input Λ is either λ(N) or some multiple
thereof. In the case of RSA we can use φ(N) =
(p−1)(q−1), or even (e ·d−1) (where e is the pub-
lic exponent), which is a multiple of λ(N). Note that
working with (e ·d−1) instead of λ(N) does not have
a large impact on the performance of the algorithm,
since e is usually small (typically e will be equal to 3
or 216 +1).

The variable R[1] is set to a value equivalent to
1 mod N and will therefore have no effect on the re-
sult but will involve a multiplication with an integer
modulo N′ = ρ ·N. This means that there is no condi-
tional branching within the exponentiation loop. The
multiplication with a given R[i] can be determined by
calculating a pointer to the relevant variable, assum-
ing that the variables of R[i], for 1 ≤ i ≤ b, are con-
tiguous in memory.

Algorithm 1 also slightly differs from the classical
2k-ary exponentiation algorithm as the first operation
of the while loop is

A← A2k−1
mod R[0] ,

Algorithm 1: Secure 2k-ary exponentiation al-
gorithm

Input: M, d = (d`−1,d`−2, . . . ,d0)b where
b = 2k for some k ≥ 1, N, ρ, Λ, and two
random values r1 and r2 (of bit length
|ρ|2).

Output: S = Md mod N.

M∗ = M + r1 ·N
d∗ = (d−1+ r2 ·Λ)/2
U∗ = 1+ r1 ·N
N′ = ρ ·N
R[0]← N′
R[1]←U∗ mod R[0]
R[2]←M∗ mod R[0]

for j = 3 to b do
R[j]← R[j−1] ·R[2] mod R[0]

end
i← blogb d∗c
A← R[d∗i]2 mod R[0]
i← i−1
while (i≥ 0) do

A← A2k−1
mod R[0]

A← A ·R[d∗i +1] mod R[0]
A← A2 mod R[0]
i← i−1

end
A← r1 ·A ·R[1] mod R[0]
A← A/r1

return A

rather than
A← A2k

mod R[0] .

This can be explained if we suppose that

M2 = M2 mod N ,

then S = Md mod N can be rewritten as

S = M2
(d−1)/2 ·M mod N .

This allows d to be replaced with (a randomised rep-
resentation of) (d− 1)/2, when it is multiplied by a
small random at the beginning of the exponentiation.
The last modular multiplication can be moved outside
the while loop reducing the amount of computation
required within the loop. This assumes that d is al-
ways odd, Λ is always even (as is the case for RSA),
and the computation of d∗ is always possible.

Each random value used has the effect that each
multiplication is randomised by a value whose effect
is equivalent to a multiplication by 1 mod N and is
therefore easily removed at the end. The bit length of

the random values used are often determined by the
algorithm and/or the architecture used. For example,
in software implementations the natural choice would
be to use random values with the same bit length as
the words manipulated by the processor (or a multiple
thereof).

The initialisation of R[1] and R[2] ensures that
these variables always contain a value whose bit
length is similar to the bit length of N′. A value with
a constant bit length will, therefore, always be given
to the underlying multiplication algorithm. This re-
moves the possibility of an attacker provoking a situ-
ation that could allow timing analysis by choosing M
as a small integer (chosen-message attack).

The change in d means that, for a fixed value of
d, each execution of the algorithm will behave differ-
ently. It is therefore not possible to derive informa-
tion by observing multiple executions, an attacker is
obliged to attempt to derive d from a single execution.

Also note that the two last instructions, A ← (r1 ·
A · R[1] mod R[0])/r1, can also be implemented as
A ← A ·R[1] mod N. This choice of instruction will
depend on which instruction is most suitable for a
given implementation.

The security of this algorithm against the side-
channel analysis methods described in Section 2 is as
follows.

Timing Analysis: The algorithm will take a
constant number of operations to execute, i.e.
d(log2 d∗)/ke sets of k squaring operations and one
multiplication. The only differences in computation
time will be caused by the variable bit length of r2.
However, there are no data dependent differences in
execution time to allow a timing analysis to take
place. As described in Section 2, it is assumed that the
underlying squaring operation (respectively the mul-
tiplication) will always take the same amount of time
for inputs of a given bit length. The bit length of the
inputs to all the multiplications is identical for all d∗i
because the initialisation steps mean that each R[i], for
1≤ i≤ b, contains a variable with a bit length similar
to N′.

Cache-Based Side-Channel Analysis: The result
of the calculation of the powers of M∗ will be stored
in the cache. In a multi-threaded system it would
be potentially possible to exploit this, by determining
how an implementation behaves with different values
of d. This possibility is removed by the masking of
the input variable with small random variables. In
particular, the modification to d means that the cache
lines accessed for a given value of M will vary unpre-
dictably from one execution to another.

If an attacker is able to produce a trace of the cache
accesses it is potentially possible to determine some
information on d∗, as each value of d∗i will cause
the algorithm to access different cache lines. An at-
tacker may therefore be able to determine d∗ which
will give a value that is equivalent to d when used as
an exponent modulo N. A trick that can remove this
side channel is used in the current implementation of
OpenSSL and is described in Section 5.

Branch Prediction Analysis: As mentioned previ-
ously, there is no conditional branching within the
(main loop of) the algorithm, and it will, therefore,
not be possible to determine any bits of d, or d∗, by
observing the behaviour of the branch predictor. The
required variable can be accessed by calculating an
offset from the beginning of R[0], if R[0] to R[b] are
stored in contiguous memory.

It would be reasonable to assume that an attacker
can determine at what point the conditional jumps
used in the for and while loops occur (Acıiçmez,
2007). As stated above, it is assumed that each squar-
ing operation (respectively the multiplication) will al-
ways take the same amount to time to calculate for
inputs of a given bit length. The bit length of each
R[i], for 1 ≤ i ≤ b, is identical, and an attacker will,
therefore, not be able to derive any information by
choosing M as a small integer.

This side channel can also be removed by un-
rolling the loops, either in the source code or by using
the compiler. However, this would require the imple-
mentation of a different function for each bit length of
interest, and that the most significant bit of r2 is set to
one so that the bit length of d∗ is constant.

4 FURTHER OPTIMISATIONS

Another version of Algorithm 1 is presented in Algo-
rithm 2, and contains some further optimisations that
can make an implementation more efficient in terms
of speed and memory required. It is possible to com-
bine N′ and R[0] (as used in Algorithm 1) in memory
to reduce the memory that is required to implement
the proposed algorithm. This can be achieved by ob-
serving that

R[1]← 1+ r1 ·N mod N′ ,

whose purpose is to allow a multiplication by 1 mod
N to take place, can also be written as

R[1]← r1 ·N−1 mod N′ (≡−1 (mod N)
)

.

This is because it is always followed by a squaring
(namely, A← A2 mod R[0]).

However, letting N′ = ρ · N, this requires that
the while loop is modified to take into account this
change in Algorithm 2. Each R[i], for 1≤ i < b, there-
fore contains M∗i/2 mod N′ — and R[0] contains a
value that is equivalent to −1/2 (mod N), and after
the multiplication operation the result is corrected by
doubling A. Provided that N is odd (which is always
the case for RSA moduli), this can be implemented
on a processor that manipulates words of ω bits by
calculating

N′′ = 2ω−1 ·ρ ·N
where ρ is a small odd random integer that is used to
increase the bit length of N · 2ω−1 and to randomise
the value of −1/2 (mod N). Indeed, since N and ρ
are assumed to be odd, it follows that

⌊
N′′

2ω

⌋
=

⌊
ρ ·N

2

⌋
=

ρ ·N−1
2

≡−1/2 (mod N)

and N′′ mod 2ω = 2ω−1. In other words, this will cre-
ate a value for N′′ where the least significant word is
2ω−1 and the remaining upper words represent a ran-
domised value for −1/2 (mod N). In order to be re-
sistant to side-channel analysis, the precomputed val-
ues of M∗i/2, for 1 ≤ i < b, are computed modulo
N′ = ρ ·N and so are represented with the same num-
ber of words as (ρ ·N−1)/2, which is written in R[0].

As presented, Algorithm 2 assumes a little-endian
representation; if all R[i] are stored in continuous
memory, R[0]− denotes the memory location starting
one word before R[0]. Nevertheless, it can easily be
adapted to accommodate a big-endian representation.

In Algorithm 2 the modulus N′′ is always an even
number. This excludes the use of Montgomery mul-
tiplication, and will require the use of an alternative,
such as Barrett or Quisquater multiplication (Barrett,
1987; Quisquater, 1992).

5 COMPARISON WITH OPENSSL

The algorithm used in OpenSSL1 for the constant
time implementation of a modular exponentiation is
the classical 25-ary exponentiation algorithm, and
uses Montgomery multiplication. Each Mi mod N,
for 0≤ i < 2k, are computed and stored in their Mont-
gomery representation. This uses more memory than
the proposed algorithm as the modulus cannot be
stored in the same memory.

To make the cache accesses behave in a deter-
ministic manner for all possible values of d, the val-
ues of Mi mod N, for 0 ≤ i < 2k, are mapped so that

1At the time of writing the most recent release of
OpenSSL was version 0.9.8e.

Algorithm 2: Secure 2k-ary exponentiation al-
gorithm (II)

Input: M, d = (d`−1,d`−2, . . . ,d0)b where
b = 2k for some k ≥ 1, N odd, random
odd value ρ, Λ, processor word-size in
bits ω, 2 random values r1 and r2 (of bit
length |ρ|2), and a random value r3 (of
bit length ω).

Output: S = Md mod N.

M∗ = (M/2 mod N)+ r1 ·N
d∗ = (d−1+ r2 ·Λ)/2
N′ = ρ ·N
R[0]← N′
R[1]←M∗
A← R[1]+R[1] mod R[0]
for j = 3 to b do

R[j]← R[j−1] ·A mod R[0]
end
i← blogb d∗c
A← 2R[d∗i]+ r3 ·R[0]
R[0]−← 2ω−1 ·R[0]
A← A mod R[0]−
A← A2 mod R[0]−
i← i−1
while (i≥ 0) do

A← A2k−1
mod R[0]−

A← A ·R[d∗i] mod R[0]−
A← A+A mod R[0]−
A← A2 mod R[0]−
i← i−1

end
A← 2r1 ·A ·R[1] mod R[0]−
A← A/r1

return A

the choice of any arbitrary Mi mod N will access the
same cache lines. This is achieved by selecting 2k

to be the same as the number of bytes available in
each cache line. One cache line can then be used
to store one byte of each Mi mod N, for 0 ≤ i < 2k,
i.e. if we consider a cache to be a matrix of bytes,
where the number columns is the cache line size, each
Mi mod N is stored in column i+1.

No timing analysis can be conducted based on the
use of the cache as the same number of cache lines
will be accessed for each loop of the algorithm. It
also prevents trace-based cache analysis as the same
cache lines will be accessed for all possible values of
the private exponent. This requires careful implemen-
tation, as it is important that the same byte from each
Mi mod N, for 0≤ i < 2k, is stored on the same cache

line.
If someone were to take the OpenSSL source and

compile it on a platform with a non-standard cache
line size (the default in OpenSSL is 32 bytes, and
the classical 25-ary exponentiation algorithm), with-
out modifying the source, there could be some po-
tential security problems. If, for example, this was
implemented on a platform with a cache line size of
16 bytes, then the first cache line would contain the
first byte of each each Mi mod N, for 0≤ i < 24, and
the second cache line would contain the the first byte
of Mi mod N, for 24 ≤ i < 25. This pattern contin-
ues for the bytes stored in the following cache lines.
If an attacker is able to determine which set of cache
lines are used for each multiplication (i.e. odd or even
numbered cache lines) some bits of d can be deter-
mined. More precisely, an attacker would be able to
determine the most significant bit of each window of
k bits.

This problem can be avoided by using the algo-
rithm proposed in this paper, as an attacker may be
able to determine some bits of d∗ but this will not pro-
vide any information on d. However, in an implemen-
tation of the proposed algorithm it is still necessary
to use the memory mapping described above, so that
the same cache lines are accessed for each Mi mod N,
for 0 ≤ i < 2k. Otherwise a trace-based cache analy-
sis can potentially reveal d∗, which is equivalent to d
when used as an exponent modulo N.

This paper does not claim that this represents
a security flaw in the current implementation of
OpenSSL. Indeed, the use of 16-byte cache lines
is considered in the source, but requires the cache
line size to be declared. Not all programmers would
be aware of the security issues surrounding micro-
architectural attacks.

The default implementation of RSA in OpenSSL
uses the blinding scheme given in (Chaum, 1985), and
described in Algorithm 3. The proposed algorithm
will provide a more efficient implementation, as Al-
gorithm 3 requires that te mod N and t−1 mod N are
stored in memory and periodically updated. More-
over, each time a new t is required a modular inverse
needs to be calculated which will increase the time
required to compute Algorithm 3.

The proposed algorithm will also provide a more
secure implementation, since the exponent is ran-
domised. The appendix describes a theoretical at-
tack that could break the current implementation of
OpenSSL, where Algorithm 3 is used, but would not
be able to break the proposed algorithm. This is possi-
ble because an attacker is required to derive the entire
value of d∗ in one attack to break the proposed al-
gorithm. In the current implementation of OpenSSL,

Algorithm 3: Chaum’s blinding scheme
Input: M, d, e where e ·d ≡ 1 (mod φ(N)), N,

a random value t where 0≤ t ≤ N−1
and is coprime to N.

Output: S = Md mod N.

A←M · te mod N
A← Ad mod N
A← t−1 ·A mod N

return A

the repeated use of the same value of d could allow
information on different bits of d to be derived from
separate attacks.

6 CONCLUSION

This paper presents a side-channel resistant version of
the 2k-ary exponentiation algorithm for calculating a
modular exponentiation. This algorithm is presented
in Algorithm 1, and an optimised version is presented
in Algorithm 2.

In summary the advantages of the proposed algo-
rithm over the default settings of the implementation
used in OpenSSL are:

1. The proposed algorithm requires less memory
than the current implementation of OpenSSL as
the modulus N can be stored in the same mem-
ory as M0 mod N. It is also not necessary to
store a pair te mod N and t−1 mod N in mem-
ory, as smaller random values can be used that
only have mild constraints. Moreover, it is shown
in (Acıiçmez et al., 2007a) that the calculation
of the modular inverse necessary for this blinding
method could be vulnerable to side-channel anal-
ysis.

2. If the source is compiled by a naı̈ve programmer
there is less chance of a bug compromising the
security of the exponentiation algorithm. An ex-
ample of this is given in Section 5.

3. The proposed algorithm is more secure against
other attacks than the current implementation of
OpenSSL. A theoretical attack is described in
the appendix that could compromise the security
of the current implementation of OpenSSL, even
when the current blinding scheme is considered.
The proposed algorithm cannot be attacked in this
manner.

REFERENCES

Acıiçmez, O. (2007). Private communication.

Acıiçmez, O. and Koç, C. K. (2006). Trace-
driven cache attacks on AES. Cryptology ePrint
Archive, Report 2006/138. http://eprint.
iacr.org/2006/138/ .

Acıiçmez, O., Gueron, S., and Seifert, J.-P.
(2007). New branch prediction vulnerabilities
in OpenSSL and necessary software counter-
measures. Cryptology ePrint Archive, Report
2007/039, 2007, http://eprint.iacr.org/ .

Acıiçmez, O., Koç, C. K., and Seifert, J.-P. (2007a).
On the power of simple branch prediction
analysis. Cryptology ePrint Archive, Report
2006/351, 2006, http://eprint.iacr.org/ .

Acıiçmez, O., Koç, C. K., and Seifert, J.-P. (2007b).
Predicting secret keys via branch prediction. In
Topics in Cryptology — CT-RSA 2007, volume
4377 of Lecture Notes in Computer Science,
pages 225–242. Springer-Verlag.

Bao, F., Deng, R. H., Han, Y., Jeng, A., Narasimhalu,
A. D., and Ngair, T. (1997). Breaking public key
cryptosystems on tamper resistant devices in the
presence of transient faults. In Security Proto-
cols, volume 1361 of Lecture Notes in Computer
Science, pages 115–124. Springer-Verlag.

Barrett, P. (1987). Implementing the Rivest-Shamir-
Adleman public-key encryption algorithm on a
standard digital processor. In Advances in Cryp-
tology — CRYPT0 ’87, volume 267 of Lec-
ture Notes in Computer Science, pages 311–323.
Springer-Verlag.

Bernstein, D. J. (2005). Cache timing attacks
on AES. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf .

Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero,
M., and Palermo, G. (2005). AES power at-
tack based on induced cache miss and counter-
measures. In International Symposium on Infor-
mation Technology: Coding and Computing —
ITCC 2005, pages 586–591. IEEE Computer So-
ciety.

Brumley, D. and Boneh, D. (2003). Remote timing
attacks are practical. In 12th USENIX Security
Symposium, pages 1–14.

Chaum, D. (1985). Security without identification:
transaction systems to make big brother obso-
lete. Communications of the ACM, 28(10):1030–
1044.

Hachez, G. and Quisquater, J.-J. (2000). Montgomery
exponentiation with no final subtractions: Im-
proved results. In Cryptographic Hardware and
Embedded Systems — CHES 2000, volume 1965
of Lecture Notes in Computer Science, pages
293–301. Springer-Verlag.

Joye, M., Quisquater, J.-J., Bao, F., and Deng, R. H.
(1997). RSA-type signatures in the presence of
transient faults. In Cryptography and Coding,
volume 1355 of Lecture Notes in Computer Sci-
ence, pages 155–160. Springer-Verlag.

Knuth, D. (2001). The Art of Computer Programming,
volume 2, Seminumerical Algorithms. Addison–
Wesley, third edition.

Kocher, P. (1996). Timing attacks on implementa-
tions of Diffie-Hellman, RSA, DSS, and other
systems. In Advances in Cryptology — CRYPTO
’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer-Verlag.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differen-
tial power analysis. In Advances in Cryptology
— CRYPTO ’99, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer-
Verlag.

Montgomery, P. (1985). Modular multiplication with-
out trial division. Mathematics of Computation,
44:519–521.

OpenSSL (2007). Open source toolkit for SSL/TLS.
http://www.openssl.org .

Osvik, D. A., Shamir, A., and Tromer, E. (2006).
Cache attacks and countermeasures: the case of
AES. In Topics in Cryptology — CT-RSA 2006,
volume 3860 of Lecture Notes in Computer Sci-
ence, pages 1–20. Springer-Verlag.

Page, D. (2002). Theoretical use of cache mem-
ory as a cryptanalytic side-channel. Cryptol-
ogy ePrint Archive, Report 2002/169. http://
eprint.iacr.org/2002/169/ .

Quisquater, J.-J. (1992). Encoding system according
to the so-called RSA method, by means of a
microcontroller and arrangement implementing
this system. U.S. Patent Number 5,166,978. Also
presented at the rump session of EUROCRYPT
’90.

Rivest, R., Shamir, A., and Adleman, L. M. (1978).
Method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21(2):120–126.

Schindler, W. (2000). A timing attack against RSA
with the Chinese remainder theorem. In Cryp-
tographic Hardware and Embedded Systems —

CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 109–124. Springer-
Verlag.

Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M.,
Miyauchi, H. (2003). Cryptanalysis of DES im-
plemented on computers with cache. In Cryp-
tographic Hardware and Embedded Systems —
CHES 2003, volume 2779 of Lecture Notes
in Computer Science, pages 62–76. Springer-
Verlag.

Walter, C. D. (1999a). Montgomery exponentiation
needs no final subtractions. Electronic Letters,
35(21):1831–1832.

Walter, C. D. (1999b). Montgomery’s multiplica-
tion technique: How to make it smaller and
faster. In Cryptographic Hardware and Embed-
ded Systems — CHES ’99, volume 1717 of Lec-
ture Notes in Computer Science, pages 80–93.
Springer-Verlag.

APPENDIX

In this appendix a theoretical attack on the current ver-
sion of OpenSSL is described. The attack assumes
that an attacking process is running concurrently with
the exponentiation algorithm, that can read and mod-
ify arbitrary addresses in RAM. If this process is able
to modify the values of Mi mod N, for 0≤ i < 2k, be-
fore they are used to calculate a modular exponentia-
tion an attack can be envisaged based on (Bao et al.,
1997; Joye et al., 1997).

An attacker can, arbitrarily, choose some Mi mod
N, for 1≤ i < 2k, and overwrite this value in memory
with M0 mod N. This has the effect of replacing all b-
digits whose value is i with zero (note that b = 2k). An
attacker can then seek to determine how many digits
were changed from i to zero.

If, for example, the j-th and k-th b-digits of d are
changed from i to zero, then the expected signature S′
from a message M will satisfy the following equation:

S′e

M
≡ (Me)−(i·b j) · (Me)−(i·bk) (mod N) (†)

where e is the public exponent. A more complex
equivalence can be determined where an attacker has
set a chosen Mi mod N to M0 mod N, since more dig-
its will be changed than are considered in the above
example.

If, for a chosen i, each instance where the b-digit
is equal to i is replaced with zero, this could, poten-
tially, allow an attacker to determine where in d each

b-digit is equal to i. This could be achieved by calcu-
lating the result of S′e/M mod N for all of the possible
combinations of changed digits.

For example, if we consider RSA signature gen-
eration using a 1024-bit modulus calculated using
the 25-ary modular exponentiation algorithm (as cur-
rently used in OpenSSL). There will be d1024/5e =
205 loops in the modular exponentiation algorithm.
If, for an arbitrary i (for 1 ≤ i < b), Mi mod N is
changed to M0 mod N, this will, statistically, be ex-
pected to affect d1024/5e/25 = 6.4 loops, i.e. on av-
erage 6.4 b-digits, that are normally equal to i, will
be set to zero. In order to determine which groups
of five bits an equation similar to Equation (†) can be
determined for each of the

(205
7

)
= 241.3 possible com-

binations that cover the expected number of groups of
five bits that have changed.

This is likely to be computationally infeasible
because of the number of possible changes in d,
each of which require the generation of the result of
S′e/M mod N. However, this expected number of sig-
natures can be significantly reduced if an attacker is
able to divide this process into stages, i.e. make a
change half way through the modular exponentiation
and derive some information, and then repeat the at-
tack and make a change before the exponentiation to
complete the attack for a given value of i.

This attack is still valid if the blinding scheme
described in Algorithm 3 is used, as an attacker can
overwrite some arbitrary Mi · te mod N with a value
equivalent to 1 mod N. No knowledge of t is required
since d and N are not modified during the blinding
scheme.

This problem can be avoided by using the algo-
rithm proposed in this paper. The attack is still valid,
but an attacker will only be able to determine some
bits of one instance of d∗ and this will not provide
any information on d.

