
Differential Fault Analysis

Marc Joye∗ and Michael Tunstall†

Synonyms

Fault analysis, Fault attacks, Fault injec-
tion; Collision fault analysis.

Definitions

Differential fault analysis is an active at-
tack against cryptographic implementa-
tions. The goal is to induce faults during
a cryptographic operation to infer private
information (e.g., a decryption key).

∗ Corresponding author
Zama, Paris, France
marc@zama.ai

† Rambus Cryptography Research, San Fran-
cisco, CA, USA
michael.tunstall@cryptography.com

Background

Cryptographic systems should not only
be resistant to cryptanalysis, they should
also be resistant to implementation at-
tacks, including side-channel and fault
attacks. Differential fault analysis was
developed by Boneh et al (2001) and
extended to the symmetric-key setting
by Biham and Shamir (1997). The prin-
ciple idea behind fault attacks consists
in modifying the normal behavior of a
cryptographic implementation in order
to get a faulty output. Then from one or
more faulty outputs, the attacker tries to
infer some information about the secret
key. Examples of practical fault injection
are described in Skorobogatov and An-
derson (2002); Bar-El et al (2006). When
successful, those attacks are very pow-
erful; for example, applied to the AES,
only one pair of correct/faulty cipher-
texts suffice to recover the whole secret
key. Of course, numerous countermea-
sures have been proposed to avoid, pre-
vent, or detect fault attacks.

1



2 Marc Joye and Michael Tunstall

We refer the reader to Joye and Tun-
stall (2012) for a detailed account on var-
ious aspects of fault analysis, including
countermeasures.

Analyzing Block Ciphers

The first example of a fault attack ap-
plied to a block cipher was described by
Biham and Shamir (1997), who noted
that injecting a fault could be analyzed
using techniques from differential crypt-
analysis.

Differential cryptanalysis operates
by assuming that an internal state in
two instances of a block has a small
difference. That is, for two instances
of the same block cipher they have
nearly the same state after a certain
number of rounds of the block cipher
and have some small difference. An
attacker would then determine how this
difference would propagate through the
remaining rounds of a block cipher. This
small difference will typically impose
some structure in the XOR difference
between the two instances in subsequent
rounds of the block cipher.

If one is able to inject a fault into a
block cipher one can compare a normal
instance with a faulty one, where a small
error has been injected while encrypting
the same plaintext. This is a significant
advantage over traditional differential
cryptanalysis, where one would have
to wait for the correct circumstances to
occur by encrypting a large number of
plaintexts. When faults are used to cause
a small error followed by differential
cryptanalysis the attack is typically
referred to as differential fault analysis.

When applied to AES, it has been
shown that a single fault is sufficient to

derive a 128-bit AES key (Tunstall et al
2011). If one byte is modified in the
input to the penultimate MixColumns
operation, then a four byte difference
will occur in the input to the last
MixColumns operation. The differ-
ence on the output of the MixColumns
operations can be computed based on
the possible values for the four-byte
difference. One can then construct a set
of equations involving the last sub-key
and conduct four 32-bit search for
sections of the last subkey that satisfy
these equations.

For example, given a fault in the input
to the eighth round, considering the state
of the differences after the ninth round
shift row, one can obtain the following
set of equations that include the values of
the last subkey key bytes k1, k8, k11 and
k14, thus giving an expression for 32 key
bits:

2δ = S−1(x1⊕ k1)⊕S−1(x′1⊕ k1)

δ = S−1(x14⊕ k14)⊕S−1(x′14⊕ k14)

δ = S−1(x11⊕ k11)⊕S−1(x′11⊕ k11)

3δ = S−1(x8⊕ k8)⊕S−1(x′8⊕ k8)

where k1, k8, k11 and k14 are all unknown
values in {0, . . . ,255}, δ is the effect of
the fault propagated to the ninth round
also in {0, . . . ,255}, x1, x14, x11, x8 are
ciphertext bytes from the correct cipher-
text, x′1, x′14, x′11, x′8 are ciphertext bytes
from the faulty ciphertext and S−1 is the
inverse of the SubBytes function.

Using the above an attacker would
select a value for δ and determine which
values of k1, k8, k11 and k14 satisfy
the equations using four independent
exhaustive searches. Each equation will
return 0, 2, or 4 hypotheses (Nyberg
1993) and in total should return 28

hypotheses for the 32 bits of the last



Differential Fault Analysis 3

subkey. This can be repeated with
another three sets of equations for
the remaining bits of the last subkey,
resulting in an exhaustive search of 232

to determine a 128-bit AES secret key.
Another example of differential fault

analysis is to inject a fault in the early
rounds of a block cipher. One can then
do an exhaustive search for the plain-
text that produces the incorrect cipher-
text when no fault is injected. The search
space is dictated by whatever hypothe-
ses an attacker can make about the effect
of the injected fault. For example, affect-
ing one chosen byte in the second round
will give an exhaustive search of size
232. The attack then proceeds with a sim-
ilar strategy to that described above, but
comparing plaintexts rather than cipher-
texts. This is typically referred to as col-
lision fault analysis (Blömer and Seifert
2003; Hemme 2004).

Analyzing Public-Key
Algorithms

Differential fault analysis is not limited
to block ciphers. Public-key crypto-
graphic algorithms typically make
use of hard mathematical problems to
provide security. Hence, attacks and
countermeasures can make use of the
algebraic properties of the cryptographic
algorithms. This is illustrated below,
showing how faults can be applied to
RSA signatures; see Boneh et al (2001).

Let N = pq be the product of two
large (equal-size) distinct prime integers.
Let also a public exponent e co-prime to
Euler’s function ϕ(N) = (p− 1)(q− 1)
and corresponding private exponent d =
1/e mod ϕ(N). The public key is {N,e}
while the private key is d. Imagine that

the signature of a message m is com-
puted as σ ← µ(m)d mod N for some
deterministic padding function µ (e.g.,
Full-Domain Hash or FDH). Using pub-
lic key {N,e}, anyone can verify the va-
lidity of signature σ on message m by
checking that σ e mod N ?

= µ(m).
RSA signing can be sped up us-

ing Chinese remaindering (a.k.a.
CRT mode). In this case, the private
key is given by {p,q,dp,dq, iq} with
dp = d mod (p−1), dq = d mod (q−1),
and iq = q−1 mod p. Signature σ on
message m is generated by evalu-
ating two half exponentiations, σp ←
µ(m)dp mod p and σq← µ(m)dq mod q,
and then σ ← CRT(σp,σq) :=
σq + q

(
iq(σp − σq) mod p

)
. This

yields an expected speed-up factor of 4.
Now suppose that one of the two

half exponentiations is faulty; say,
suppose one gets the faulty signature
σ ′ = CRT(σ ′p,σq) where σ ′p ̸= σp and
σq is correct. It is easily seen that a
simple GCD (greatest common divisor)
computation enables the recovery of
private parameter q as q = gcd(σ ′ − σ

(mod N),N), and next of p = N/q.
Actually, the faulty signature suffices
to recover p and q as gcd(σ ′e − µ(m)
(mod N),N) = q.

RSA can also be used for encryption
by “exchanging” the roles of e and d.
The encryption of a message m is given
by C← µ(m)e mod N for some padding
function µ . For security reasons, the
padding used for encryption must
be probabilistic, such as OAEP. The
previous attack does not apply against
e.g. RSA-OAEP since the correctness
of the plaintext message m is explicitly
checked by the decryption algorithm.
Note also that the attacker has no idea of
the random coins used in the evaluation



4 Marc Joye and Michael Tunstall

of µ(m)—remember that µ is always
probabilistic for RSA encryption.

Countermeasures

Countermeasures to fault attacks typi-
cally rely on adding redundancy. This
can vary from low-level countermeasure,
such as adding hardware checksums to
registers, to high-level countermeasures,
such as repeating algorithms and verify-
ing that the operations produce the same
output. Alternatively, one can rely on so-
called infective computation (Yen et al
2003) where an error results in a faulty
output that leaks no information.

In the RSA example above one can
verify an RSA signature with a very
small decrease in performance. A public
key exponent is typically set to 216 + 1
meaning that a verification requires
17 multiplications. However, it has been
shown that one could inject two faults,
one in the RSA and the second where
the verification is evaluated (Kim and
Quisquater 2007).

Typically, it may only necessary
to consider single faults for a single
cryptographic operation, on condition
that faults can be detected and crypto-
graphic keys can be destroyed or made
inaccessible. That is, if an operating
system repeatedly sees a status indi-
cating that a fault is being injected a
response should occur. Depending on
the application, this response could
include zeroing cryptographic keys or
deactivating a device. An attacker will
need to characterize the effect of single
faults before attempting more complex
attacks. If an attacker can make many
attempts to inject faults then it may be
possible to overcome complex counter-

measures. That is, if a countermeasure is
designed to prevent n faults then it may
be overcome with n+1 faults.

When defining countermeasures to
fault attacks it is important to define a
model of what an attacker is capable
of and design appropriate countermea-
sures. Without such a model, there is
always one more attack possible with
one more fault. The second part is to
define the response to detecting a fault
attack. If a device would permanently
deactivate then the fault countermea-
sures could be quite lightweight and,
conversely, if no response is made then
the fault countermeasures would need to
be very robust.

Cross-References

Fault attack, Electromagnetic fault injec-
tion, Fault sensitivity analysis, Ineffec-
tive fault attack, Statistical fault attack,
Evolution of fault attacks on cryptosys-
tems.

References

Bar-El H, Choukri H, Naccache D, Tunstall M,
Whelan C (2006) The sorcerer’s apprentice
guide to fault attacks. Proc IEEE 94(2):370–
382, doi:10.1109/JPROC.2005.862424

Biham E, Shamir A (1997) Differential fault
analysis of secret key cryptosystems. In:
Kaliski Jr BS (ed) Advances in Cryptology
– CRYPTO ’97, Springer, Lecture Notes in
Computer Science, vol 1294, pp 513–525,
doi:10.1007/BFb0052259

Blömer J, Seifert J (2003) Fault based crypt-
analysis of the advanced encryption stan-
dard (AES). In: Wright RN (ed) Finan-
cial Cryptography (FC 2003), Springer, Lec-
ture Notes in Computer Science, vol 2742,

https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/BFb0052259


Differential Fault Analysis 5

pp 162–181, doi:10.1007/978-3-540-45126-
6 12

Boneh D, DeMillo RA, Lipton RJ (2001) On the
importance of eliminating errors in crypto-
graphic computations. J Cryptol 14(2):101–
119, doi:10.1007/s001450010016, Earlier
version appeared in Proc. of EURO-
CRYPT ’97

Hemme L (2004) A differential fault at-
tack against early rounds of (triple-)DES.
In: Joye M, Quisquater JJ (eds) Crypto-
graphic Hardware and Embedded Systems
– CHES 2004, Springer, Lecture Notes in
Computer Science, vol 3156, pp 254–267,
doi:10.1007/978-3-540-28632-5 19

Joye M, Tunstall M (eds) (2012) Fault Analysis
in Cryptography. Information Security and
Cryptography, Springer, doi:10.1007/978-3-
642-29656-7

Kim CH, Quisquater JJ (2007) Fault attacks for
CRT based RSA: new attacks, new results,
and new countermeasures. In: Sauveron D,
et al (eds) Information Security Theory
and Practices (WISTP 2007), Springer, Lec-
ture Notes in Computer Science, vol 4462,
pp 215–228, doi:10.1007/978-3-540-72354-
7 18

Nyberg K (1993) Differentially uniform map-
pings for cryptography. In: Helleseth T (ed)
Advances in Cryptology – EUROCRYPT
’93, Springer, Lecture Notes in Computer
Science, vol 765, pp 55–64, doi:10.1007/3-
540-48285-7 6

Skorobogatov SP, Anderson RJ (2002) Optical
fault induction attacks. In: Kaliski Jr BS,
et al (eds) Cryptographic Hardware and Em-
bedded Systems – CHES 2002, Springer,
Lecture Notes in Computer Science, vol
2523, pp 2–12, doi:10.1007/3-540-36400-
5 2

Tunstall M, Mukhopadhyay D, Ali S (2011)
Differential fault analysis of the advanced
encryption standard using a single fault.
In: Ardagna CA, Zhou J (eds) Informa-
tion Security Theory and Practice (WISTP
2011), Springer, Lecture Notes in Com-
puter Science, vol 6633, pp 224–233,
doi:10.1007/978-3-642-21040-2 15

Yen SM, Kim S, Lim S, Moon SJ (2003)
RSA speedup with Chinese remain-
der theorem immune against hardware
fault cryptanalysis. IEEE Transac-
tions on Computers 52(4):461–472,
doi:10.1109/TC.2003.1190587

https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1007/s001450010016
https://doi.org/10.1007/978-3-540-28632-5_19
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-540-72354-7_18
https://doi.org/10.1007/978-3-540-72354-7_18
https://doi.org/10.1007/3-540-48285-7_6
https://doi.org/10.1007/3-540-48285-7_6
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1109/TC.2003.1190587

	Differential Fault Analysis
	Marc Joye and Michael Tunstall
	Synonyms
	Definitions
	Background 
	Analyzing Block Ciphers
	Analyzing Public-Key Algorithms
	Countermeasures
	Cross-References
	References



