SMART-CARD IMPLEMENTATION OF
ELLIPTIC CURVE CRYPTOGRAPHY
AND DPA-TYPE ATTACKS

Marc Joye

Gemplus, Card Security Group
La Vigié, Avenue des Jujubiers, ZI Athélia IV, 13705 La Ciotat C’edex, France

marc.joye@gemplus.com

This paper analyzes the resistance of smart-card implementations of el-
liptic curve cryptography against side-channel attacks, and more specif-
ically against attacks using differential power analysis (DPA) and vari-

" ants thereof. The use of random curve isomorphisms is a promising
way (in terms of efficiency) for thwarting DPA-type for elliptic curve
cryptosystems but its implementation needs care.

Various generalized DPA-type attacks are presented against improper
implementations. Namely, a second-order DPA-type attack is mounted
against an additive variant of randomized curve isomorphisms and a
“refined” DPA-type attack against a more general variant. Of indepen-
dent interest, this paper also provides an exact analysis of second-order

DPA-type attacks.
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1. Introductlon

With shorter key lengths, elliptic curve cryptography has received in-
creased commercial acceptance and is already available in several smart-
card products. It is supported by several standardization bodies, includ-
ing ANSI, IEEE, ISO and NIST.

Because they better fit the constrained environment of smart cards, el-
liptic curve cryptosystems are particularly relevant to smart-card imple-
mentations. Until recently, efficient implementation meant fast running
time and small memory requirements. Nowadays, an efficient imple-
mentation must also be protected against attacks and more particularly
against side-channel attacks (e.g., based on timing analysis (TA) [11] or
on simple/differential power analysis (SPA/DPA) [12]). |
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Two classes of elliptic curves are mainly used in cryptography: (non-
supersingular) elliptic curves over binary fields (a.k.a. binary elliptic
curves) and elliptic curves over large prime fields. The former class may
be preferred for smart card implementations as arithmetic in character-
istic two can be made very efficient [6, 14] (especially in hardware). See
also [8]. | | '

In this paper, we show how to implement in a proper yet efficient way
countermeasures against DPA-type attacks for binary elliptic curve cryp-
tosystems. Of independent interest, we also provide an exact analysis of

- second-order DPA [12, 13].

The rest of this paper is organized as follows. In the next section,
we briefly review known countermeasures meant to prevent DPA-type
attacks. In Section 3, we detail the additive and multiplicative variants
of point randomization using curve isomorphisms. We point out that
the additive variant may succumb to a DPA-type attack if the slope,
resulting in the addition of two elliptic curve points, is implemented in
a straightforward way. Next, we mount a second-order DPA-type attack
against another additive variant using a randomized slope in Section 4.
In Section 5, we describe an attack against the multiplicative variant.
This attack also applies to the more general randomized curve isomor-
phisms, combining both the additive and the multiplicative variants.

Finally, we conclude in Section 6.

2. DPA-type Countermeasures

The basic operation in elliptic curve cryptography is the point mul-
tiplication: on input point P and scalar &, point Q = [k]P is returned.
DPA-type countermeasures include the randomization of k and/or P.

Let E be a nonsupersingular elliptic curve over GF(2") given by the

(short) Weierstrass equation

E:y2+xy=:v3+a2x2+a6 (1)

and let P and Q = [k]P be points on E.

The usual way to randomize k in the computation of Q = [k] P consists
in adding a random multiple of the order-of E (or of ord g(P)) [5]:

k' i=k+r#E

for a random r and then Q is evaluated as @ = [k*]P. Another option
is to split k in two (or several) shares [2, 4] (see also [17): k=ki+ k3
with k* = k—r and kj = r for a random r and then @ = [kF]P + [k3] P.
Further countermeasures dedicated to Koblitz curves (i.e., curves given
by Eq. (1) with ag € GF(2) and ag = 1) are presented in 9, 10].
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Input: %k and PEE

Output: @ = [k]P

1. Choose a random curve isomorphism ¢;
2. Compute P* =(P) on E* = ¢(E);

3. Compute Q* = [k]P* € E*;

4. Return Q=¢ (Q*) € E.

Figure 1. Randomized evaluation of Q = [k]P.

Point P can be randomized using a randomized projective represen-
tation [5] or a randomized field or curve isomorphism [10]. The use
of randomized curve isomorphisms leads to better performances (and
is easier to implement) than the use of randomized field isomorphisms.
Furthermore, it better suits binary curves as it allows to represent points
with affine coordinates (and so runs faster [6, 14]). However, as we will
demonstrate in the next section, its implementation needs care.

- 3. Randomized Curve Isomorphisms

Using randomized curve isomorphisms, a point P on an elliptic curve
FE is randomized as P* = ¢(P) on E* = ¢(E), for a random curve
isomorphism ¢ and then @ = [k]P is evaluated as ¢~ ([k] P*).

More specifically, over GF(2"), a point P = (zp,yp) on the elliptic
curve o | | :

E:y?+zy=2+ a2’ + ag

is mapped to point P* = (v?zp+7r, udyp +uszp +1) on the isomorphic
curve :

E*:y?+ajmy +ajy = 2° + aje’ + ajz + af 2)
where
(0} =u
ay =ulag +us+r+ s
4 a; =ur ' (3)

a} =ut+r? |
ay = ubas +urlay +u(ris +rt) +r® + 2 4+ r2s?

and r,s,t,u € GF(2") with u # 0 (see [15, Table III.1.2]).

As already noted in [10] the short Weierstrass equation (i.e., Eq. (2)
where o] = 1 and a3 = a} = 0) cannot be used for E* as thls implies
u=1and r =1 =0, and hence let unchanged the z-coordinate of point

P*: z(P*) = zp.



118 Marc Joye

3.1 Additive ‘randomizati()n of P

In [3], Ciet and Joye overcome the above limitation by working on the -
extended Weierstrass equation

y2+a:y+a§y=x3+a§m2+a§§w‘+a§, (4)

which, from Eg. (3), corresponds to u = 1 (and thus at = r). For

simplicity, they also set the value of s to 0. As a result, point P =
(zp,yp) is randomized into

P*=(zp+r,yp+1t) . | . (5)

Although both the z- and y-coordinates of P are now randomized, this
t be used naively in a point multiplication algorithm.

technique canno | ”
Indeed, a closer look at the addition formulas shows that the slope given

by the chord-and-tangent law, remains invariant. |

Let P} = (z},y;) and P3 = (23, y3) (with Py # —Py) denote points
on the randomized elliptic curve given by Eq. (4). Then the sum Py =
Py + P is defined as (23, ¥3) with

gt =X 2+ +a3+2]+7; and ys = M\ (z] + 73) + 5 + 25 +a3
: * * *2 * «
where \* = y%‘ﬂ% when 27 # z5 and A* = 2 AU therwise
+z | T + a3

1T 22 | |
(see [15, I11.2.3c]). Recall that (i) we are working in characteristic two,
(ii) zf = zi+7 and yf =y +tforie {1,2}, and (ili) u=1,7=a3 and
s = 0. Hence, we see that the slope

% *k t'+' t
y1+yi= y1+t+y+t Y1ty when o # o3
\* = z] + Zg z1+r+e+r T1+IT2
Yz +al+ui 22 4+ri+t+rity +t U1 ,
- — = = x1 + == otherwise
zi + a3 Ty +T+7T 1

does not depend on randoms r and 1 (we write A the corresponding
value), and consequently may be subject to a DPA-type attack (see

e.g. [5]).
Randomly choosing s.  The first idea that comes to mind is to ran-
domly choose s € GF(2"), leading to the more general randomization,

P*=(zp+ryp +szptt) . | (6)
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In this case, the slope A* involved in the addition of P = (z7,y;) and
P} = (z3,y5) becomes . 1/ ¢

(YT + Y5 __N-y1 + sz, +t 4+ y2 + szat

i+ 3y S hrtatr
AT when ] # z3
] 2yay+yt _x1+r +t+rityr+sT1+t
T] + a3 y T1+r+rT
=1x1+ AN otherwise
\ y
= A+s

and hence is masked with the value of s. It should be noted that the
evaluation of \* needs to be carefully implemented. In particular, field
registers cannot contain the values of non-randomized values (e.g., x1+

) as otherwise a DPA-type attack could still be mounted.
Unfortunately, as we will see in Section 4, such an implementation

may succumb to a second-order DPA-type attack It should however be
noted that second-order DPA-type attacks are much harder to mount
since the attacker needs to know where/when certain operations are

done.

3.2 Multiplicative randomization of P

The coordinates of point P = (zp,yp) can also be randomized in a
multiplicative way. Randomly choosing u # 0 and r = s =% =0, point
P becomes /

P* = (u*zp,udyp) (7)
on the isomorphic curve

y? +uzy = 2° + (agu?)z® + agul . (8)

Let .Pl* = (z3,y}) and Py = (z5,y3) (with P{' # —F5) denote points
on the randomized elliptic curve given by Eq. (8). Then the sum P5 =
P; + Pj is defined as (z3,%3) with

2t = X2+ Nu+au’ + 2+ 25 and y3 = A (] +23) + 97 +uas

¥ ok ’ $*2 *
yl Y2 when z} # x5 and A* = P therwise.

where A\ = —/——=
1+ 73 ur]

1
Again, denoting by /\ the slope correspondmg to the addition of P;
and P, on the initial curve, we see that /\* is multiplicatively blinded:

A* = u,
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4. A Second Order DPA-type Attack

Higher-order side-channel attacks [12] combine several samples within

a single side-channel trace.

To ease the presentation, we consider the simplified Hamming-weight
model for power leakage [13]. This model assumes that the instantaneous
power consumption (C) is linearly related to the Hamming weight (H):

C=cH+2¢ (9)

for some constants € and £. f
Using the additive randomization (see Eq. (5) or (6)), point P =

(zp,yp) on the elliptic curve E is randomized as P* = (xpx,yp~) =
(zp +7,yp + szp +1t) on the isomorphic elliptic curve E* = p(F) given
by Eq. (4). Point @ = [k]P is then evaluated as @ = oL ([k]P*).
Recall that the attacker’s goal is to recover the value of k = > i ki 2°
(or a part thereof) during the evaluation of . W.lo.g., we assume
that the point multiplication is carried out with the left-to-right binary

algorithm and that the attacker already knows the leading bits of k:
km, Em—1,- .., ki+1 with £ < m. He now wants to know the value of the

next bit of k, namely ;.

Let C(") represent the instantaneous power consumption when random
r is drawn in GF(2™). Let also C(®r+) represent the instantaneous power
consumption when the z-coordinate of point P* € E* is handled in a
register. For any point P* € E¥, we can write Tp» = Tp © r since
addition in GF(2") is equivalent to a bit-wise XOR operation. From this
observation, the attacker guesses that k; = 1 and produces two equal-size
sets, Sp and &Sy, of random points, defined as

Sy={P € E| g(z([2Ks11 +1]P)) = b} with b€ {0,1}

* where Kiy1 = S, . ki 2741 and g is a Boolean selection function

returning for g(z([2K¢+1 + 1]P)) the value of a given bit (in the repre-
sentation) of the z-coordinate of point [2K;41 + 1]P. Let R := [K¢|P =
(zg,yr) and R* = p(R) = (zr + " yr + STR + t). The next step con-
sists in computing the two average differential power consumptions (in

absolute value),

Bo = (ICER  COg and Ay = (IO - CO

and the second-order DPA operator
AP = A —Ap .
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IfA@ 20 (ie., if there are DPA peaks) then the guess of the attacker
was right, i.e., k = 1; otherwise the attacker deduces that k; = 0. See
Appendix A for a detailed proof. The attack proceeds iteratively in the

same way until the value of kg is recovered.

5. A Refinement of Goubin’s Attack

In [7], Goubin observes that the z-coordinate of a point P = (zp,ypP)
with zp = 0 is not randomized using the multiplicative randomization
(see Eq. (7)). The same holds when considering the y-coordinate of
point P = (zp,yp) with yp = 0. Over binary fields, elliptic curve
points on Weierstrass curve (1) with their z-coordinate equal to 0 are
points of order two. They are easily avoided with the cofactor variant in
cryptographic protocols [16, Section 3]. Points of large order with their
y-coordinate equal to 0 can also be defended against by using the Mont-
gomery ladder as the y-coordinate is not used in this point multiplication
algorithm [16, Section 5]. |

Another way for thwarting Goubin’s attack is to use the more general
randomization P* = (uzp + r,ulyp +uszp +t) (see e.g. [1, § 2.3]).
We will show that this method succumbs to a “refined” power analysis.

We assume that the cofactor variant is not applied and so points with
their z-coordinate equal to 0 are valid inputs to the point multiplica-
tion algorithm. An elliptic curve over GF(2") always possesses a point
of order two. Namely, the point P, = (0, aﬁzn_l) satisfies Weierstrass
equation : ,

y? +zy =i2° +aoz® +as

As in the attack of the previous section, we assume w.l.o.g. that the
point multiplication, @ = [k]P, is evaluated with a left-to-right binary
algorithm. The attacker’s goal is to recover the value of k; in the binary

representation of scalar k =Y ", k; 2t
Define K; = Y v ki 2i~t The attacker guesses that k; = 1 and

repeatetgly feeds the point multiplication algorithm with point P, =
(0,a277"). As P; is of order two, it is worth noting that R := [Ky]P =
[K: mod 2| P, = [k;]P>. Hence, when k; =1, it follows that

2m—1

R i=p(R) = o(Py) = (r,ulad" +1)

for some randoms r, ¢ and u. |
Next, the attacker computes the average differential power consump-

tion (remember that the computation of @ = [k]P is randomized),

AL .= (IC(“’R*)"— c(r)|>
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where C(#r*) and C) denote the instantaneous power consumptions

when the z-coordinate of point R* = ¢(R) is handled and when r is
randomly drawn from GF(2"), respectively. With the (idealized) model
given by Eq. (9), this yields A®D 0 when k; = 1. If A) 20 then the

attacker can deduce that k; = 0.

6. Conclusion

This paper analyzed the resistance of elliptic curve cryptosystemis
against DPA-type attacks. Several new attacks were mounted against
implementations improperly using randomized curve isomorphisms as a

means for thwarting DPA-type attacks.
Since all the attacks presented in this paper require averaging several

side-channel traces with the same input multiplier, the lesson is that
point randomization techniques should be always used in conjunction

with multiplier randomization techniques. -
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Appendix: Second-Order DPA Peaks

This appendix explains in further details why second-order DPA peaks reveal the
value of the multiplier-bit &: in a second-order DPA. We use the notations of Section 4.
We have to show that A®) 2 0 means that k; =1 and 0 otherwise.

Proof. Assume that k; = 1. Then we have K; = 2Ki41 + 1 and R = [2K;41 + 1]P.

Hence, we get

<|C(mn*) - C(f‘)DSO = el <]H($R"‘) _ H(r)DSO
' ~ e E [IH(‘TRG;T) - H(r)]}
zR,r€{0,1}"
g(zr)=0
and (zr*) (r) ( ) (r)
CER-: _CT o~ HZR@T‘_H‘T‘
{ Vs, I mR,T‘EE[;O,l}n [l {]
g(zp)=1

provided that the number of power consumption traces is sufficiently large. Moreover,

we have
[’H(-‘BRG?T) - HY(T)I]
zr,r€{0,1}"™ i
9(xg)=0
= Prlg(r)=0] [IH(’”RGBT) — H™ [] +
zg,r€{0,1}"
g(zg)=0,g(r)=0
Prlg(r)=1] B [IHCR® — O]
zp,re{0,1}"
g(zr)=0,9(r)=1
1 3
= = E HE@rO) _ )] 4 2 B [ H(=r®") _ H(’”)’J
2 zp,re{0,1}n—1 [, IJ 2 zp,re{0,1}n—1 | |

— E [,H(mR@T’) - H(T)IJ )

zg,re{0,1}n-1

We also have
E [,H@Rear) - H(’")l]

zp,re{0,1}n

1 TROT r Tr®T r
- - R [IH( RO™) _ Y( ),] E [,H( r®™) _ H( ),]
2 zp,re{o,1}” 2 zp,refo,1)"
g(zr)=0 g(zgr)=1
= 5 B [Heme_uo] 42 g MR _HO]
2 zgr,re{0,1}7—1 2 zg,r€{0,1}"
. g(zgp)=1

As Egp refo,1}n [[H(”Rer) - H“‘H] > By porefo,1)nt [fH(‘“Rer) —~ H™ 1], this implies

E [’H(mn@r) _ H(T)'} > E ['H(a:n@'f‘) — H(r)’}

,re{0,1}™ T n—1
| zRg(zeR{)___l} rsr€{0,1}
and thus , v
E [‘H(wn@r) _ H(T)‘J N ' E [!H(ﬂ-'RGBT') o H(")}} :
zr,re{0,1}% zp,re{0,1}™

g(zgr)=1 ’ g(zp)=0
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" This in turn implies

<‘C(2R*) _ C(’”)DS1 ;., <|C(-7’R*) _ C(’“)Dso

and consequently A® 0,

On the coh’crary, when k: = 0, both sets So and S1 behave as random (i.e., uncor-
related) sets. Therefore, provided that the number of power consumption traces is

sufficiently large, we have

(jc=r") — C(r)'}sl ~ (JCER) - €Oy

and so A® ~ 0.
From

Exn,re{o,l}n[H(mﬁeﬂ —H" | g(zr) =0] =0
Eoprefojn[HEF®) —H) | g(zg) =1and g(r)=0]=1 ,
Eeprefo,1)n[HER® — H® | g(zr) =1 and g(r) = 1] = -1

an analysis similar to the one given in [13] would erroneously deduce that AP e
when k: = 1 and A® =~ 0 otherwise. The conclusion, however, remains correct.
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