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Abstract

Implementation attacks are a major threat for crypto-
graphic applications. Recently, Baek and Vasyltsov (IS-
PEC 2007) proposed a unified countermeasure for protect-
ing elliptic curve implementations against a variety of im-
plementation attacks, including differential power attacks
and fault attacks.

This paper studies the security of this countermeasure.
In particular, it shows that the fault coverage is less than
what was anticipated. Further security weaknesses are also
pointed out.
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1. Introduction

The central operation in elliptic cryptography is the point
multiplication. Given a point P and a scalar d ≥ 0, one has
to compute [d]P , that is, P +P +· · ·+P (d times). Scalar d
is typically a secret value. If an attacker can recover it (or a
part thereof), he will likely break the underlying cryptosys-
tem. Modern cryptosystems feature provable security: their
security can be proved in a given security model. However,
existing security models suppose that an attacker gets only
access to the input and the output of the cryptosystem. This
does not rule out implementation attacks.

The first family of implementation attacks is that of fault
attacks. They were introduced by Boneh et al. [7]. See
also [4, 8, 6] for attacks in the context of elliptic curve cryp-
tography. The goal of the attacker is to induce a fault in or-
der to generate a malfunction. Next, given the faulty output,
the attacker tries to infer some secret information. Excellent
surveys on fault attacks can be found in [2, 12].

The second family of implementation attacks is that of
side-channel attacks, introduced by Kocher et al. [13, 14]
and applied to elliptic curve cryptography in [10]. Here the

attacker monitors some side-channel information (e.g., the
power consumption) in order to deduce the inner-workings
of a crypto-algorithm and thereby infers some secret infor-
mation. When there is a single measurement, the attack is
referred to as an SPA-type attack. When there are several
measurements together with statistical analysis, the attack is
referred to as a DPA-type attack. We refer the reader to [15]
for a complete treatment of the subject. See also [5, 9]
for attacks and countermeasures dedicated to elliptic curve
cryptosystems.

In [1], the authors propose a unified countermeasure
aimed at protecting point multiplication against both fault
attacks and DPA-type attacks. Hence, combined with
an SPA-resistant point multiplication algorithm, the so-
obtained implementation should resist against known im-
plementation attacks. The countermeasure generalizes to
elliptic curves a countermeasure first suggested for RSA by
Shamir [17]. The idea is to embed the given elliptic curve
in a random extension ring. A similar countermeasure was
proposed in [6]. The main differences are (i) the extension is
random, and (ii) the curve equation is extended. The aim is
to cover a larger class of attacks. This also yields a number
of advantages. However, as will become apparent, choosing
a random extension rather than a fixed one as in [6] gives
rise to several security issues.

The rest of this paper is organized as follows. In the next
section, we introduce some background on elliptic curves.
We define elliptic curves over a field and over a ring, and
present their arithmetic. In Section 3, we review the unified
countermeasure of Baek and Vasyltsov. Section 4 is the core
of the paper. We give a detailed security analysis of this
unified countermeasure. We also compare it with a previous
fault countermeasure. Finally, we conclude in Section 5.

2. Background on Elliptic Curves

Let p be a prime ≥ 5. An elliptic curve E over the field
Fp is given by the set of points (x, y) ∈ Fp × Fp satisfying



the Weierstraß equation

y2 = x3 + ax + b (1)

where gcd(4a3 + 27b2, p) = 1, together with a single el-
ement Op called the ‘point at infinity’. The set of points
of the elliptic curve over Fp is noted Ep(a, b) and forms an
abelian group under the chord-and-tangent law, with iden-
tity element Op [18]. We have:

1. For all P ∈ Ep(a, b), P + Op = Op + P = P ;

2. The inverse of P = (x1, y1) is −P = (x1,−y1);

3. Let P = (x1, y1) and Q = (x2, y2) ∈ Ep(a, b) with
Q 6= −P . Then P + Q = (x3, y3) where

x3 = λ2 − x1 − x2 , y3 = λ(x1 − x3)− y1

with λ =

{
3x1

2+a
2y1

if x1 = x2 ,
y1−y2
x1−x2

otherwise .

To avoid (costly) field inversions, points are preferably
represented using projective Jacobian coordinates. The
curve equation then becomes

Y 2 = X3 + aXZ4 + Z6 . (2)

An affine point P = (x1, y1) is represented by the triplet
(X1 : Y1 : Z1) = (x1θ

2 : y1θ
3 : θ) for any θ ∈ F∗p. The

point at infinity is the unique point with the Z-coordinate
equal to 0, O = (θ2 : θ3 : 0). Conversely, given a projective
Jacobian point P = (X1 : Y1 : Z1) with Z1 6= 0, its affine
representation is recovered as P = (X1/Z1

2, Y1/Z1
3).

Letting M, S and c respectively denote a multiplication, a
squaring and a multiplication by curve parameter a (in Fp),
state-of-the-art formulæ [3] require 11M + 5S for point ad-
dition and 1M + 8S + 1c for point doubling.

Elliptic curves over rings are defined similarly. The main
difference is that they do no longer form an abelian group.
Let n be the product of two primes p, q ≥ 5, and let a, b be
such that gcd(4a3 + 27b2, n) = 1. An elliptic curve over
the ring Zn is the set of points (x, y) ∈ Zn × Zn satisfying
Weierstraß equation (1) together with the point On.

Consider the group Ẽn(a, b) given by the direct product

Ẽn(a, b) = Ep(a, b)× Eq(a, b) .

By Chinese remaindering, there exists a unique point
P = (x1, y1) ∈ En(a, b) for every pair of points Pp =
(x1p, y1p) ∈ Ep(a, b) \ {Op} and Pq = (x1q, y1q) ∈
Eq(a, b) \ {Oq} such that Pp = P mod p and Pq =
P mod q. This equivalence is denoted by P = [Pp, Pq].
Since On = [Op, Oq], the group Ẽn(a, b) consists of all
the points of En(a, b) and of points of the form [Pp, Oq] or
[Op, Pq]. It is easy to see that the chord-and-tangent addi-
tion, whenever it is defined, coincides with the group oper-
ation on Ẽn(a, b).

3. Baek-Vasyltsov Countermeasure

In this section, we review the unified countermeasure
proposed by Baek and Vasyltsov. We focus on the (large)
prime field case. The binary field case is treated analo-
gously. We refer the reader to [1] for a complete descrip-
tion.

The countermeasure makes use of a curve equation E′ of
the form

Y 2 + pY Z3 = X3 + aXZ4 + bZ6 (3)

defined over the ring Zpr where p is a (large) prime and r is
a positive integer. Remark that E′ mod p = E, as given by
Eq. (2).

Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two
points on E′ with Z1, Z2 6= 0. In [1], the authors define the
operations ADD-JP and DBL-JP given by

ADD-JP(P , Q) = (X3 : Y3 : Z3) for P 6= ±Q

where




X3 = R2 −H2(X2Z1
2 + X1Z2

2)
Y3 = R(X1Z2

2H2 −X3)
− (Y1 + pZ1

3)Z2
2H3

Z3 = Z1Z2H

(4)

with R = Y2Z1
3 − Y1Z2

3 and H = X2Z1
2 −X1Z2

2, and

DBL-JP(P ) = (X3 : Y3 : Z3)

where




X3 = M2 − 2X1(F + Y1)2

Y3 = M
(
X1(F + Y1)2 −X3

)− F (F + Y1)3

Z3 = Z1(Y1 + F )
(5)

with M = 3X1
2+aZ1

4 and F = Y1+pZ1
3. The respective

costs are 15M + 4S and 7M + 5S + 1c over Zpr. This has
to be compared with the usual elliptic curve addition law,
11M + 5S and 1M + 8S + 1c over Fp (cf. Section 2).

We can now describe the countermeasure. Suppose we
have to compute [d]P with P = (x1 : y1 : 1) on an el-
liptic curve E defined over Fp. The secure implementation
proposed in [1] proceeds as follows:

1. Choose a small random integer r.

2. Compute B = y1
2 + py1 − x1

3 − ax1 mod (pr) and
let E′

/Zpr
: Y 2 + pY Z3 = X3 + aXZ4 + BZ6.

3. Compute (Xd : Yd : Zd) = [d](x1 : y1 : 1) on E′

using an SPA-resistant point multiplication algorithm.



4. Check whether

Yd
2 + pYdZd

3 ?≡ Xd
3 + aXdZd

4 + BZd
6 (mod r)

and, if not, return O and stop.

5. Return (Xd : Yd : Zd) mod p.

4. Analysis

The point at infinity Opr on extended curve equation (3)
for E′ is Opr = (θ2 : θ3 : 0) for any θ ∈ Z∗pr. If we
evaluate DBL-JP(Opr), we get from Eq. (5) M = 3θ4,
F = θ3 and hence X3 = θ8, Y3 = θ12 and Z3 = 0. Since
(θ8 : θ12 : 0) = (ϑ2 : ϑ3 : 0) with ϑ = θ4, this implies that
the doubling formula remains valid for the point at infinity:

DBL-JP(Opr) = Opr . (6)

Since Opr mod p = Op, this also holds on E.
If we inspect what happens with the addition formula on

E′ with the point at infinity, ADD-JP(P ,Opr) for a point
P = (X1 : Y1 : Z1), we get from Eq. (4), R = θ3Z1

3

and H = θ2Z1
2. This yields X3 = θ6Z1

6 − θ6Z1
6 = 0,

Y3 = θ3Z1
3(−X3) = 0 and Z3 = 0. Likewise, if we

evaluate ADD-JP(Opr, P ), we obtain X3 = 0, Y3 = 0 and
Z3 = 0. The addition formula is thus not valid for the point
at infinity:

ADD-JP(P , Opr)
ADD-JP(Opr,P )

}
= (0 : 0 : 0)
6= P , ∀P ∈ E′ .

(7)

Again, noting that (0 : 0 : 0) mod p = (0 : 0 : 0), this also
holds for E.

4.1. Security

The previous observations can be generalized. For any
prime factor q dividing r, if we let Oq = Opr mod q then
DBL-JP(Opr) mod q = Oq and ADD-JP(P , Opr) mod
q = ADD-JP(Opr,P ) mod q = (0 : 0 : 0). More gener-
ally:

Proposition 1 Using the previous notations, for any P and
S satisfying Eq. (3) such that the Z-coordinate of S mod q
is zero, we have:

DBL-JP(S) ≡ S (mod q)

and

ADD-JP(P , S)
ADD-JP(S,P )

}
≡ (0 : 0 : 0) (mod q) .

Proof. The Z-coordinate of S mod q being zero implies
that either S mod q = (0 : 0 : 0) or S mod q = Oq . If
S mod q = (0 : 0 : 0), it is easy to see that the proposition
holds by inspecting Eqs (4) and (5). If S mod q = Oq , the
proposition is a straightforward application of the Chinese
Remainder Theorem. ut

Although not a valid projective point, triplet (0 : 0 :
0) satisfies Eq. (3). This explains the correctness of Baek-
Vasyltsov countermeasure: Step 4 of the countermeasure
(cf. Section 3) will always be satisfied — when there is no
fault.

Let us analyze the reverse direction. Suppose that a fault
occurred during the computation of (Xd : Yd : Zd) = [d]P .
The expected probability that faulty point (Xd : Yd : Zd)
passes verification step

Yd
2 + pYdZd

3 ?≡ Xd
3 + aXdZd

4 + BZd
6 (mod r) (8)

is about, at best, of 2−|r|2 where |r|2 denotes the bit-length
of random integer r. Unfortunately, the proposed counter-
measure is not perfect. The above verification step (Eq. (8))
checks that triple (Xd : Yd : Zd) belongs to elliptic
curve E′ over the ring Zr, or, as shown earlier, that it is
(0 : 0 : 0). If q denotes the largest factor of r such that
(Xd : Yd : Zd) ≡ (0 : 0 : 0) (mod q) then a random
fault will go through the verification with a probability of
about 2−|r/q|2 ≈ 2−|r|2+|q|2 . Hence, we deduce that the
“effective” bit-length of r is roughly (|r|2 − |q|2).

We carried out experiments to estimate the average value
of |q|2 with the collection of elliptic curves recommended
by NIST for U.S. federal government use [11, Appendix 6].
The next table gives the average effective bit-length of ran-
dom integer r.

|r|2 P-192 P-224 P-256 P-384 P-521
20 10.7 10.3 10.1 9.6 9.2
32 22.7 22.3 22.1 21.6 21.2
40 30.7 30.3 30.1 29.6 29.2

Table 1. Effective randomization bit-length

NIST-recommended curves are denoted P-xxx and de-
fine elliptic curves over fields Fp where p is an xxx-bit
prime. We see that for recommended cryptographic sizes
(192 bits to 521 bits) the loss in effectiveness is approxima-
tively of 10 bits. We also see that larger field sizes imply
slightly larger loss in effectiveness. This follows from the
fact that (Xd : Yd : Zd) = [d]P with d ∈ [1,#E[ and
p + 1 − 2

√
p ≤ #E ≤ p + 1 + 2

√
p. Finally, Table 1

confirms that the loss in effectiveness is independent of the
bit-length of r. The conclusion is that roughly 10 more bits
for random integer r are needed.



It is also important to study the probability that q = r,
that is, that (Xd : Yd : Zd) ≡ (0 : 0 : 0) (mod r).
When this occurs, a fault will not be detected by the pro-
posed countermeasure. Table 2 presents the probability that
q = r or, equivalently, the average proportion of undetected
faults.

|r|2 P-192 P-224 P-256 P-384 P-521
20 23.2% 27.3% 28.9% 33.8% 37.3%
32 2.4% 3.1% 3.6% 5.0% 6.2%
40 0.4% 0.6% 0.7% 1.0% 1.4%

Table 2. Proportion of undetected faults

Quite surprisingly, we observe that for 20-bit random in-
tegers r, the average proportion of undetected faults ranges
from 23.2% to 37.3% (!). For 32- or 40-bit random inte-
gers r, the proportion of undetected faults is smaller but
still remains non-negligible. Of course, the use of larger
values for r yields better results (i.e., protection) but also
significantly impacts the overall performance.

Remark. The previous analysis focuses on elliptic curves
defined over prime fields. In [1], the authors adapt their
countermeasure to elliptic curves over binary fields. A sim-
ilar analysis applies to this setting as well.

4.2. Comparison

In [6], building on Shamir’s countermeasure, Blömer et
al. devised another strategy to prevent fault attacks. Rather
than forming the combined curve on-the-fly over a random
extension ring, they suggest to pre-compute and store a fixed
prime-order elliptic curve Er(ar, br) over prime field Fr

along with a point Pr on Er. The evaluation of Q = [d]P
on Ep(a, b) then goes as Q′ = [d]P ′ on E′ and next, if
Q′ ≡ [d mod #Er]P ′ (mod r), Q = Q′ mod p where

E′
/Zpr

: Y 2 = X3 + CRT(a, ar)X Z4 + CRT(b, br)Z6

and
P ′ = CRT(P , Pr) .

Compared to the countermeasure of Baek and Vasyltsov,
the order of point P r = P ′ mod r is always the largest
possible prime, namely #Er. As a consequence, the suc-
cess probability of the aforementioned attacks is minimal.

4.3. Further results

Since the last intermediate values may no longer be ran-
domized (i.e., as soon as (Xd : Yd : Zd) ≡ (0 : 0 : 0)
(mod r)), the bits of k appearing at the end of the algo-
rithm can be recovered through a DPA-type attack [10] on

the output of the algorithm by reversing the computations.
This can be combined with the attack of [16]. To pre-
vent such attacks, the proposed countermeasure should be
modified by returning the result point in affine coordinates,
(Xd/Zd

2, Yd/Zd
3) or, alternatively, by returning a random

projective representation thereof, (Xd θ2 : Yd θ3 : θ) for
some non-zero θ ∈ Fp.

5. Conclusion

In this paper, we analyzed the security of a unified coun-
termeasure recently proposed by Baek and Vasyltsov. In
particular, we pointed out that the overhead incurred by
the countermeasure is larger than what could be thought at
first sight: on average, 10 additional bits are required for
the randomizer in cryptographic applications. Moreover,
and somewhat more surprisingly, we observed that a non-
negligible proportion of faults is undetected if the random-
izer is an integer in the range 220 ∼ 240. We conducted ex-
tensive experiments on NIST-recommended curves to sup-
port our investigations.

As a conclusion, our results show that the countermea-
sure of Baek and Vasyltsov should be used with care. They
also underline the necessity of using larger randomizers, at
the cost of performance losses.
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