Published in J. von zur Gathen, J.L. Imana, and Q.K. Kog, Eds, Arithmetic of Finite Fields
(WAIFI 2008), vol. 5130 of Lecture Notes in Computer Science, pp. 36-46, Springer, 2008.

Fast Point Multiplication on Elliptic Curves
Without Precomputation

Marc Joye

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@thomson.net

Abstract. Elliptic curves find numerous applications. This paper de-
scribes a simple strategy to speed up their arithmetic in right-to-left
methods. In certain settings, this leads to a non-negligible performance
increase compared to the left-to-right counterparts.

Keywords. Elliptic curve arithmetic, binary right-to-left exponentiation,
mixed coordinate systems.

1 Introduction

Elliptic curve point multiplication — namely, the computation of @ = [k] P given
a point P on an elliptic curve and a scalar k— is central in almost every non-
trivial application of elliptic curves (cryptography, coding theory, computational
number theory, ...). Its efficiency depends on different factors: the field defini-
tion, the elliptic curve model, the internal point representation and, of course,
the scalar multiplication method itself.

The choice of the field definition impacts the performance of the underly-
ing field arithmetic: addition, multiplication and inversion. There are two types
of fields: fields where inversion is relatively fast and fields where it is not. In
the latter case, projective coordinates are preferred over affine coordinates to
represent points on an elliptic curve. Points can also be represented with their
x-coordinate only. Point multiplication is then evaluated via Lucas chains [13].
This avoids the evaluation of the y-coordinate, which may result in improved
overall performance.

Yet another technique to speed up the computation is to use additional
(dummy) coordinates to represent points [4]. This technique was later refined
by considering mixed coordinate systems [6]. The strategy is to add two points
where the first point is given in some coordinate system and the second point is
given in some other coordinate system, to get the result point in some (possibly
different) coordinate system.

Basically, there exist two main families of scalar multiplication methods,
depending on the direction scalar k is scanned: left-to-right methods and right-
to-left methods [10, 5]. Left-to-right methods are often used as they lead to many
different generalizations, including windowing methods [8]. In this paper, we are

interested in implementations on constrained devices like smart cards. Hence,
we restrict our attention to binary methods so as to avoid precomputing and
storing (small) multiples of input point P. We evaluate the performance of the
classical binary algorithms (left-to-right and right-to-left) in different coordinate
systems. Moreover, as the inverse of a point on an elliptic curve can in most
cases be obtained for free, we mainly analyze their signed variants [15, 14]. Quite
surprisingly, we find a number of settings where the right-to-left methods outper-
form the left-to-right methods. Our strategy is to make use of mixed coordinate
systems but, unlike [6], we do this on binary methods for scalar multiplication.
Such a strategy only reveals useful for the right-to-left methods because, as will
become apparent later, the point addition routine and the point doubling rou-
tine may use different input/output coordinate systems. This gives rise to further
gains not available for left-to-right methods.

The rest of this paper is organized as follows. In the next section, we in-
troduce some background on elliptic curves and review their arithmetic. We
also review the classical binary scalar multiplication methods. In Section 3, we
present several known techniques to speed up the point multiplication. In Sec-
tion 4, we describe fast implementations of right-to-left point multiplication. We
analyze and compare their performance with prior methods. Finally, we conclude
in Section 5.

2 Elliptic Curve Arithmetic

An elliptic curve over a field K is a plane non-singular cubic curve with a
K-rational point [16]. If K is a field of characteristic # 2,3,! an elliptic curve
over K can be expressed, up to birational equivalence, by the (affine) Weierstrafl
equation

Ex: v =a34+asx+ag with A:= —(4a43 + 27(162) #0,

the rational point being the (unique) point at infinity O. The condition A # 0
implies that the curve is non-singular.

The set of K-rational points on F is denoted by E(K). It forms a commutative
group where O is the neutral element, under the ‘chord-and-tangent’ law. The
inverse of P = (z1,y1) is —P = (x1,—y1). The addition of P = (z1,41) and
Q = (22,y2) on E with Q # —P is given by R = (x3,y3) where

23 =N —x1 —xy and y3 = Az1 —23) — 11 (1)
with
AT i p£Q [chord]
A= gl 5 T2
STt if P=Q [tangent]
211

! We focus on these fields because inversion can be expensive compared to a multi-
plication. For elliptic curves over binary fields, a fast point multiplication method
without precomputation is available [12].

2.1 Coordinate systems

To avoid (multiplicative) inversions in the addition law, points on elliptic curves
are usually represented with projective coordinate systems.

In homogeneous coordinates, a point P = (x1,y1) is represented by the triplet
(X1:Y1: Zy) = (0zy : Oy : 0) for some non-zero § € K, on the elliptic curve
Y2Z = X34-a4 XZ2+ag Z3. The neutral element is given by the point at infinity
(0: 6 :0) with 8 # 0. Conversely, a projective homogeneous point (X; : Y7 : Z7)
with Z; # 0 corresponds to the affine point (X;/21,Y1/27).

In Jacobian coordinates, a point P = (x1,y1) is represented by the triplet
(X1:Y1:Z1) = (Nay: My; :) for some non-zero A € K. The elliptic curve
equation becomes

V?=X*+a, XZ* + a6 Z° .

Putting Z = 0, we see that the neutral element is given by O = (A2 : A% : 0).
Given the projective Jacobian representation of a point (X7 : Y7 : Z;) with
Zy # 0, its affine representation can be recovered as (x1,y1) = (Xl/Z127 Yl/Zl?’).

2.2 Point addition

We detail the arithmetic with Jacobian coordinates as they give rise to faster
formulee [9)].

Replacing (z;,y;) with (X;/Z;?,Yi/Z:®) in Eq. (1) we find after a little al-
gebra that the addition of P = (X; : Y7 : Z1) and Q = (X5 : Y2 : Z3) with
Q # +P (and P,Q # O) is given by R = (X3 : Y3 : Z3) where

Xs=R*+G -2V, Y3=R(V —X3)—S1G, Z3=27,Z-H (2)

with R= 8 — S5, G = H®, V = U H?, S = Y125°, So = Y2 Z:*, H=U; — Uy,
Ui = X1Z5%, and Uy = X57,? [6]. Let M and S respectively denote the cost of a
(field) multiplication and of a (field) squaring. We see that the addition of two
(different) points requires 12M + 4S. When a fast squaring is available, this can
also be evaluated with 11M + 5S by computing 22, Zy = (Z) + Z2)* — Z,> — Z5*
and “rescaling” X35 and Y3 accordingly [1].

The doubling of P = (X3 : Y7 : Z1) (i.e., when Q = P) is given by R =
(X3 :Ys3: Z3) where

X3=M?*-2S, Ys=M(S—X3)-8T, Z3=2V12Z, (3)

with M = 3X12 + ay Zl4, T = Y14, and S = 4X1Y12. Letting ¢ denote the cost
of a multiplication by constant a4, the doubling of a point costs 3M + 6S + 1c
or 1M + 8S + 1c by evaluating S = 2[(X; + Y12)2 - X% - T] and Z3 = (Y1 +
Z)? -2 - 72 [1].

Remark that Eq. (3) remains valid for doubling O. We get [2](A? : A3 : 0) =
(A®:A12:0)=0.

2.3 Point multiplication

Let k = Zf;é k;2¢ with k; € {0,1} denote the binary expansion of k. The
evaluation of [k]P, that is, P+ P + ---+ P (k times) can be carried out as

)) Py=P
WP =3 [k (12)P) = 2P = S P with {
0<i<b—1 0<i<b—1 0<i<f—1 P; = [2|P;—
k;=1 k;i=1

By keeping track of the successive values of P; in a variable Ry and by using
a variable Rg to store the accumulated value, > P;, we so obtain the following
right-to-left algorithm:

Algorithm 1 Right-to-left binary method

Input: P, k>1

Output: [k]P

1: Ro<— O; Ry — P

while (k > 1) do
if (k is Odd) then Rg +— Ro + R1
k«— |k/2]
Ry — [2]R1

end while

7. Ro— Ro+ R1

8: return Rg

There is a similar left-to-right variant. It relies on the obvious observation
that [k]P = [2]([k/2]P) when k is even. Furthermore, since when k is odd, we
can write [k]P = [k']P + P with k' = k — 1 even, we get:?

Algorithm 2 Left-to-right binary method

Input: P, k > 1, £ the binary length k (ie., 271 <k < 2°—1)
Output: [k|P

1: Ro— P; Ry — P;{— /-1

while (¢ # 0) do
Ro — [2]Ro
L—t—-1

if (bit(k,¢) # 0) then Ro — Ro + R1
end while
return Rg

2 We denote by bit(k,i) bit number i of k; bit number 0 being by definition the least
significant bit.

3 Boosting the Performance

3.1 Precomputation

The observation the left-to-right binary method relies on readily extends to
higher bases. We have:

WP = {[Qb]([k/Qb]P) if 2° | k
[2°]([(k = r)/2°]P) + [r]P with r = k mod 2° otherwise

The resulting method is called the 2°-ary method and requires the prior precom-
putation of [r]P for 2 < r < 2b_1. Observe that when r is divisible by a power of
two, say 2% | r, we obviously have [k]P = [2°] ([Qb] ([(k —7)/2"T5|P) + [T/QS]P>.
Consequently, only odd multiples of P need to be precomputed.

Other choices and optimal strategies for the points to be precomputed are
discussed in [6,2]. Further generalizations of the left-to-right binary method to
higher bases, including sliding-window methods, are comprehensively surveyed
in [8].

3.2 Special cases

As shown in § 2.2, a (general) point addition in Jacobian coordinates costs 11M+
5S. In the case Zy = 1, the addition of (X7 : Y7 : Z1) and (X2 : Y : 1) = (X2, Y3)
only requires 7M +4S by noting that Z22, U; and S; do not need to be evaluated
and that Z3 = Z1H. The case Z; = 1 is the case of interest for the left-to-right
binary method because the same (input) point P is added when k; = 1 (cf. Line 5
in Algorithm 2).

An interesting case for point doubling is when a4 = —3. Intermediate value M
(cf. Eq.(3)) can then be computed as M = 3(X; + Z12)(X1 — 212). Therefore,
using the square-multiply trade-off for computing Zs, Zs = (Y1+2,)?—Y1>—Z,?,
we see that the cost of point doubling drops to 3M+5S. Another (less) interesting
case is when a4 is a small constant (e.g., a4 = £1 or £2) in which case ¢ ~ 0
and so the point doubling only requires 1M + 8S.

3.3 Signed-digit representation

A well-known strategy to speed up the evaluation of @ = [k]P on an elliptic
curves is to consider the non-adjacent form (NAF) of scalar k [14]. The NAF is
a canonical representation using the set of digits {—1, 0, 1} to uniquely represent
an integer. It has the property that the product of any two adjacent digits is zero.
Among the signed-digit representations with {—1,0, 1}, the NAF has the smallest
Hamming weight; on average, only one third of its digits are non-zero [15].

When the cost of point inversion is negligible, it is advantageous to input the
NAF representation of k, k = Zf:o k;2" with k] € {—1,0,1} and k- k[, =
0, and to adapt the scalar multiplication method accordingly. For example, in
Algorithm 2, Line 5, Ry is added when k; = 1 and R; is subtracted when
ki = —1. This strategy reduces the average number of point additions in the
left-to-right binary method from (¢ —1)/2 to ¢/3.

4 Fast Right-to-Left Point Multiplication

In this section, we optimize as much as possible the binary right-to-left method
for point multiplication on elliptic curves over fields K of characteristic # 2, 3. We
assume that inversion in K is relatively expensive compared to a multiplication
in K and so restrict our attention to inversion-free formulae.

We do not consider windowing techniques, which require precomputing and
storing points. The targets we have in mind are constrained devices. We also
wish a general method that works for all inputs and elliptic curves. We assume
that the input elliptic curve is given by curve parameters a4 and ag. We have
seen earlier (cf. §3.2) that the case ay = —3 is particularly interesting because
it yields a faster point doubling. We do not focus on this case because not all
elliptic curves over K can be rescaled to ay = —3. Likewise, as we consider
inversion-free formulze, we require that the input and output points are given in
projective coordinates. This allows the efficient computation of successive point
multiplications. In other words, we do not assume a priori conditions on the
Z-coordinate of input point P.

In summary, we are interested in developing of a fast, compact and general-
purpose point multiplication algorithm.

4.1 Coordinate systems

In Jacobian coordinates, a (general) point addition requires 11M + 5S. In [4],
Chudnovsky and Chudnovsky suggested to add two more coordinates to the
Jacobian representation of points. A point P is given by five coordinates, (X; :
Yy :Z,: Ey: Fy) with By = Z12 and F; = 213. This extended representation
is referred to as the Chudnovsky coordinates and is abbreviated as J€¢. The
advantage is that the two last coordinates (i.e., E; and F;) only need to be
computed for the result point, saving 2(S + M) — 1(S + M) = 1M + 1S over the
classical Jacobian coordinates. In more detail, from Eq. (2), including the square-
multiply trade-off and “rescaling”, we see that the sum (X3 : Y5 : Z3: FE5: F3)
of two (different) points (X7 : Y71 :Zy : By : Fy) and (Xo:Ys: Zy: Ey: Fy) can
now be evaluated as

X3=R2+G -2V, Y3=R(V-X3)—S5G, @)
3 = ((Zl + Z3)* — Ey — Ez)H7 Ey=25*, Fy=FEsZ;

with R = 8] — S, G = 4H3, V = 4UH?, S, = 2Y1 F,, Sy = 2YoF, H =
Uy —Us, Uy = X1 F5, and Uy = XoFq, that is, with 10M + 4S. The drawback of
Chudnovsky coordinates is that doubling is slower. It is easy to see from Eq. (3)
that point doubling in Chudnovsky coordinates costs one more multiplication,
that is, 2M + 8S + 1c.

A similar approach was taken by Cohen, Miyaji and Ono [6] but to reduce
the cost of point doubling (at the expense of a slower point addition). Their idea
is to add a fourth coordinate, W7 = a4 Zl4, to the Jacobian point representation
(X1 : Y7 : Z;). This representation, called modified Jacobian representation, is

denoted by J™. With this representation, on input point (X; : Y7 : Z; : W),
its double, [2](Xy : Y7 @ Zy : W), is given by (X3 : Y3 : Z3 : W3) where
the expression of X3, Y3 and Z3 is given by Eq. (3) but where M and W3 are
evaluated using Wj. In more detail, we write

Xy=M2-2S, Y3=DM(S—X;)—8T,)
s =217y, Wsy=16TW,

with M = 3X;2 + Wy, T = 1*, and S = 2[(X; + V1%)? — X;? — T]. The
main observation is that W3 1= ay4 Zs* = 16Y1%(ay Z,*) = 16TW,. This saves
(2S + 1c) — 1M. Notice that the square-multiply trade-off cannot be used for
evaluating Zs since the value of Z;2 is not available. The cost of point doubling
is thus 3M + 5S whatever the value of parameter a4. The drawback is that point
addition is more costly as the additional coordinate, W3 = ay Z347 needs to
be evaluated. This requires 2S5 + 1c and so the cost of point addition becomes
11M 4+ 7S + 1c.

The different costs are summarized in Table 1. For completeness, we also
include the cost when using affine and projective homogeneous coordinates. For
affine coordinates, | stands for the cost of a field inversion.

Table 1. Cost of point addition and doubling for various coordinate systems

Point doubling

System Point addition
(as = —3)
Affine (A) OM + S + 1 2M + 25 + | —
Homogeneous (H) 12M + 2S 5M + 6S + 1c 7™ + 3S
Jacobian (J) 11M + 5S 1M +8S + 1c 3M + 58
Chudnovsky (7°) 10M + 4S OM+8S5+1c | 4M+5S
Modified Jacobian (J™) 11IM 4+ 7S + 1c 3M + 58S —

When using projective coordinates, we see that Chudnovsky coordinates yield
the faster point addition and that modified Jacobian coordinates yield the faster
point doubling on any elliptic curve. We also see that point doubling in modi-
fied Jacobian coordinates is as fast as the fastest ay = —3 case with (regular)
Jacobian coordinates.

4.2 Mixed representations

Rather than performing the computation in a single coordinate system, it would
be interesting to consider mixed representations in the hope to get further gains.
This approach was suggested in [6]. For left-to-right windowing methods with
windows of width w > 2, the authors of [6] distinguish three type of operations
and consider three coordinate systems C?, 1 < i < 3:

1. intermediate point doubling: C* — C!, Rg — [2] Ro;
2. final point doubling: C* — C?, Rg — [2] Ro;
3. point addition: C? x C3 — C!, (Rg, R1) — Ro + R;.

For inversion-free routines (or when the relative speed of | to M is slow), they
conclude that the optimal strategy is to choose C! = J™, C? = J and C? = J°.

It is worth remarking that the left-to-right binary method (Algorithm 2) and
its different generalizations have in common the use of an accumulator (i.e., Rg)
that is repeatedly doubled and to which the input point or a multiple thereof is
repeatedly added. This explains the choices made in [6]:

— the input representation of the point doubling (i.e., C!) is the same as the
output representation of the point addition routine;

— the output representation of the (final) point doubling routine (i.e., C?) is
the same as the input representation of [the first point of] the point addition
routine;

— the input representation of [the second point of] the point addition routine
(i.e., C?) should allow the calculation of output point in representation C?.

4.3 Right-to-left methods

Interestingly, the classical right-to-left method (Algorithm 1) is not subject to the
same conditions: a same register (i.e., Ry) is repeatedly doubled but its value is
not affected by the point additions (cf. Line 3). As a result, the doubling routine
can use any coordinate system as long as its output gives enough information
to enable the subsequent point addition.? Formally, letting the three coordinate
systems D?, 1 < i < 3, we require the following conditions on the point addition
and the point doubling routines:

1. point addition: D! x D? — D! (Rg, R1) — Ro + Ry;
2. point doubling: D3 — D3, Ry +— [2] Ry with D3 D D2,

The NAF-based approach is usually presented together with the left-to-right
binary method. It however similarly applies when scalar & is right-to-left scanned.
Indeed, if k = Zf:o k. 2% denotes the NAF expansion of k, we can write

. / 7 — ! ; 1 PO =P
k)P = 0;}/@-]([2 |P) = Oggesgn(’“ﬂp 2 with { PP, U
- k[#0

and where sgn(k}) denotes the sign of &/ (i.e., sgn(k}) = 1if k} > 0 and sgn(k}) =
—11if k} < 0). Note that our previous analysis on the choice of coordinate systems

3 More generally, we require an efficient conversion from the output representation of
the point doubling (say, Ds) and the input representation of [the second point of] the
point addition (say, D2). With the aforementioned (projective) point representations,
{H,T, T, T™}, for the sake of efficiency, this translates into D3 2 D, that is, that
the coordinate system D; is a subset of coordinate system Ds.

on the (regular) right-to-left binary method remains valid for the NAF-based
variant.

We are now ready to present our algorithm. The fastest doubling is given by
the modified Jacobian coordinates. Hence, we take D3 = J™. Tt then follows that
we can choose D2 = J™ or J. As the latter leads to a faster point addition, we
take D? = J. For the same reason, we take D! = 7. The inputs of the algorithm
are point P = (X3 : Y] : Z1) 7 given in Jacobian coordinates and scalar k > 1.
The output is [k]P = (X : Yi : Zx)7 also given in Jacobian coordinates. For
further efficiency, we use a NAF representation for & and compute it on-the-fly.
JacAdd[(X*,Y™*, Z*), (T, T», T3)] returns the sum of (X* : Y* : Z*) and (T3 :
Ty : T3) as per Eq. (2), provided that (X* : Y™* : Z*) # £(Ty : To : T3) and (X*:
Y*:Z*),(Th: Ty : T5) # O. The JacAdd routine should be adapted to address
these special cases as is done e.g. in [9, § A.10.5]. ModJacDouble[(Ty, Ts, T5,Ty)]
returns the double of point (77 : Ty : T3 : Ty) in modified Jacobian coordinates
as per Eq. (3).

Algorithm 3 Fast right-to-left binary method
Input: P=(X::Y1:Z1)7,k>1
Output: [k?]P = (Xk : Yk : Zk)j
10 (X*,Y*, Z%) « (1,1,0); (Th, T2, T3, T4) «— (X1,Y1, Z1, a4 Z1*)
2: while (k > 1) do

3: if (k is odd) then

4: u—2—(kmod4); k—k—u

5: if (u=1) then

6: (X™, YY", Z") « JacAdd[(X™, Y™, Z7), (T1, T2, T3)]
T else

8: (X*,Y*, Z%) — JacAdd[(X*,Y*, Z*), (T1, —Tb, T5)]
9: end if

10: end if

11: k—k/2

12: (T‘l7 TQ, Tg, T4) — ModJacDouble[(Tl, 7127 Tg, T4)}
13: end while

14: (X*,Y™*,Z") « JacAdd[(X™,Y™, Z"), (T1, T», T5)]
15: return (X*,Y"*, Z%)

Remember that we are targeting constrained devices (e.g., smart cards). In
our analysis, we assume that there is no optimized squaring: S/M = 1. Also as
we suppose general inputs, we also assume ¢/M = 1. However, to ease the com-
parison under other assumptions, we present the cost formula in their generality.
We neglect field additions, subtractions, tests, etc. as is customary.

As a NAF has on average one third of digits non-zero, the expected cost for
evaluating [k] P using Algorithm 3 for an ¢-bit scalar k is

g-(11M+5S)+€~(3M+5S) ~ 13.33(M . (7)

This has to be compared with the §~(11M+5S)+€~(1M+85+1c) ~ 15.33¢(M of
the (left-to-right or right-to-left) inversion-free NAF-based binary methods using
Jacobian coordinates. We gain 2 field multiplications per bit of scalar k.

One may argue that Algorithm 3 requires one more temporary (field) vari-
able, Ty. If two more temporary (field) variables are available, the classical meth-
ods can be sped up by using modified Jacobian representation; in this case, the
cost becomes g “(1IM+7S+1c)+ ¢+ (3M + 5S) =~ 14.33¢ M, which is still larger
than 13.33¢ M. If ¢three more temporary (field) variables are available, the perfor-
mance of the left-to-right method can be best enhanced by adapting the optimal
strategy of [6] as described earlier to the case w = 1: Input point P is then repre-
sented in Chudnovsky coordinates. This saves 1M + 1S in the point addition. As
a result, the cost for evaluating [k]P becomes £ - (10M+6S+1c)+£- (3M+5S) ~
13.67¢M > 13.33¢ M.

Consequently, we see that even when further temporary variables are avail-
able, Algorithm 3 outperforms all NAF-based inversion-free methods without
precomputation. The same conclusion holds true when considering unsigned
representations for k. Replacing ¢/3 with (¢ — 1)/2, we obtain ~ 16{M with
the proposed strategy, and respectively 18/ M, 17.5¢ M and 16.5¢ M for the other
left-to-right binary methods.

In addition to efficiency, Algorithm 3 presents a couple of further advantages.
Like the usual right-to-left algorithm, it is compatible with the NAF computation
and does not require the knowledge of the binary length of scalar k ahead of
time. Moreover, as doubling is performed using modified Jacobian coordinates,
the doubling formula is independent of curve parameter ay.

For sensitive applications, Algorithm 3 can be protected against SPA-type at-
tacks with almost no penalty using the table-based atomicity technique of [3], as
well as against DPA-type attacks using classical countermeasures.* Furthermore,
because scalar k is right-to-left scanned, Algorithm 3 thwarts the doubling at-
tack described in [7]. Note that, if not properly protected against, all left-to-right
point multiplication methods (including the Montgomery ladder) are subject to
the doubling attack.

5 Conclusion

This paper presented an optimized implementation for inversion-free point mul-
tiplication on elliptic curves. In certain settings, the proposed implementation
outperforms all such previously known methods without precomputation. Fur-
ther, it scans the scalar from the right to left, which offers a couple of additional
advantages.

Acknowledgments I am grateful to the reviewers for useful comments.

4 SPA and DPA respectively stand for “simple power analysis” and “differential power
analysis”; see [11].

References

10.

11.

12.

13.

14.

15.

16.

. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://www.

hyperelliptic.org/EFD/jacobian.html.

Daniel J. Bernstein and Tanja Lange. Fast scalar multiplication on elliptic curves.
In Gary Mullen, Daniel Panario, and Igor Shparlinski, editors, 8th International
Conference on Finite Fields and Applications, Contemporary Mathematics. Amer-
ican Mathematical Society, to appear.

Benoit Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost solutions for
preventing simple side-channel analysis: Side-channel atomicity. IEEE Transac-
tions on Computers, 53(6):760-768, 2004.

David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers gen-
erated by addition in formal groups and new primality and factorization tests.
Advances in Applied Mathematics, 7(4):385-434, 1986.

Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138
of Graduate Texts in Mathematics. Springer-Verlag, 1993.

Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponen-
tiation using mixed coordinates. In Kazuo Ohta and Dingyi Pei, editors, Advances
in Cryptology — ASIACRYPT ’98, volume 1514 of Lecture Notes in Computer Sci-
ence, pages 51-65. Springer, 1998.

Pierre-Alain Fouque and Frédéric Valette. The doubling attack - Why upwards
is better than downwards. In Colin D. Walter, Cetin K. Kog, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems — CHES 2003, volume
2779 of Lecture Notes in Computer Science, pages 269—280. Springer, 2003.
Daniel M. Gordon. A survey of fast exponentiation methods. Journal of Algo-
rithms, 27(1):129-146, 1998.

IEEE 1363-2000. Standard specifications for public key cryptography. IEEE Stan-
dards, August 2000.

Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-Welsey,
2nd edition, 1981.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
M. Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science, pages 388—-397. Springer-Verlag, 1999.

Julio Lépez and Ricardo Dahab. Fast multiplication on elliptic curves over GF(2™)
without precomputation. In Cetin K. Kog and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems (CHES ’99), volume 1717 of Lecture Notes in
Computer Science, pages 316-327. Springer, 1999.

Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of Computation, 48(177):243-264, 1987.

Frangois Morain and Jorge Olivos. Speeding up the computations on an ellip-
tic curve using addition-subtraction chains. RAIRO Theoretical Informatics and
Applications, 24(6):531-543, 1990.

George W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231-308,
1960.

Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer-Verlag, 1986.

