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1 Introduction

This paper deals with secure implementations [24] for ECC-based cryptosystems [45, 50, 49, 10, 11, 20] and,
more specifically, with the development of efficient detection methods against fault attacks (or errors) [14].
Practical ways to mount fault attacks are surveyed in [4, 27]. See also [39, Part III] for a more recent and
complete account.

1.1 Fault Attacks and Countermeasures

A fault attack disturbs the expected behavior of a security device and makes it work abnormally so as to infer
sensitive data. Since their discovery in 1997, several countermeasures were proposed. The key principle consists
in computing a sensitive operation in a redundant way or in exploiting some redundancy already present in
the calculation.

Shamir’s countermeasure
Most known countermeasures rely on an elegant method first suggested by Shamir [58] for RSA [55] using
Chinese remaindering [53]. These include [2, 63, 12, 18, 43, 61] to name a few.

We follow the general presentation of [40]. Consider the ring Z/𝑁Z of integers modulo 𝑁 where 𝑁 = 𝑝𝑞 is
the product of two large primes. On input an element 𝑥 ∈ Z/𝑁Z (for example, 𝑥 is a ciphertext or the hash
value of a message) and a private exponent 𝑑, the goal is to compute an RSA exponentiation, 𝑦 = 𝑥𝑑 mod 𝑁 ,
in the presence of faults. In order to prevent fault attacks, the evaluation of 𝑦 = 𝑥𝑑 mod 𝑁 is carried out in
three steps as follows:
1. Compute 𝑦 = 𝑥𝑑 mod 𝑟𝑁 for a (small) integer 𝑟;
2. Compute 𝑦′ = 𝑥𝑑 mod 𝑟;
3. Check whether 𝑦 ≡ 𝑦′ (mod 𝑟), and

– if so, output 𝑦 = 𝑦 mod 𝑁 ;
– if not, return error.
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Shamir’s method is an application of the Chinese remainder theorem (CRT). We obviously have 𝑦 ≡ 𝑦 (mod 𝑁)

and 𝑦 ≡ 𝑦′ (mod 𝑟) when the computations are not faulty. In the presence of random faults, the probability
that 𝑦 ≡ 𝑦 (mod 𝑟) is about 1/𝑟. Larger values for 𝑟 imply a higher detection probability, but at the expense
of more demanding computations.

Vigilant’s countermeasure
Another method was proposed at CHES 2008 by Vigilant [61]. Again, the goal is to perform a private RSA
exponentiation, 𝑦 = 𝑥𝑑 mod 𝑁 , in the presence of faults. The method goes as follows:
1. Form 𝑋 = CRT

(︀
𝑥 (mod 𝑁), 1 + 𝑟 (mod 𝑟2)

)︀
for a (small) integer 𝑟;

2. Compute 𝑦 = 𝑋𝑑 mod 𝑟2𝑁 ;
3. Check whether 𝑦 ≡ 1 + 𝑑𝑟 (mod 𝑟2), and

– if so, output 𝑦 = 𝑦 mod 𝑁 ;
– if not, return error.

In Step 1, CRT(·, ·) denotes an application of the Chinese remainder theorem; namely, the so-constructed 𝑋

satisfies 𝑋 ≡ 𝑥 (mod 𝑁) and 𝑋 ≡ 1 + 𝑟 (mod 𝑟2).

Remark 1. When Vigilant’s method is applied to RSA with Chinese remaindering, special care needs to
exercised. A number of potential fault attacks against RSA-CRT are presented in [21]; implementation
recommendations are also provided.

1.2 Elliptic Curve Cryptography

Elliptic curve cryptography [45, 50] is an interesting alternative to RSA because the keys are much shorter
for a same conjectured security level. Given a point 𝑃𝑃𝑃 on an elliptic curve 𝐸 and a private integer 𝑑, the
basic operation consists in computing the scalar multiplication [𝑑]𝑃𝑃𝑃 , that is, 𝑃𝑃𝑃 ⊞ 𝑃𝑃𝑃 ⊞ · · · ⊞ 𝑃𝑃𝑃 (𝑑 times)
where ⊞ denotes the group operation on 𝐸. The goal of an attacker is to recover the value of 𝑑 (or a part
thereof) by inducing faults. See [8, 1, 17, 13, 57, 42, 44, 51] for examples of fault attacks against elliptic curve
cryptosystems.

1.3 Our Contributions

Vigilant’s method presents a couple of advantages over Shamir’s method. In particular, it trades the small
exponentiation 𝑦′ = 𝑥𝑑 mod 𝑟 against the multiplication 1 + 𝑑𝑟 mod 𝑟2 = 1 + 𝑟 · (𝑑 mod 𝑟) in the verification
step. This latter operation is much faster. We note however that the evaluation of 𝑦′ in Shamir’s method can
be sped up as 𝑥𝑑 mod 𝜙(𝑟) mod 𝑟 (where 𝜙 denotes Euler’s totient function), provided that the value of 𝜙(𝑟) is
known. The correctness of Vigilant’s countermeasure can be seen as a consequence of the binomial theorem.
This latter states that (1 + 𝑟)𝑑 =

∑︀𝑑
𝑗=0

(︀
𝑑
𝑗

)︀
1𝑑−𝑗 𝑟𝑗 =

∑︀𝑑
𝑗=0

(︀
𝑑
𝑗

)︀
𝑟𝑗 = 1 + 𝑑𝑟 +

𝑑(𝑑−1)
2 𝑟2 + · · · . Reducing this

identity modulo 𝑟2 yields (1 + 𝑟)𝑑 ≡ 1 + 𝑑𝑟 (mod 𝑟2). Hence, since by construction 𝑋 ≡ 1 + 𝑟 (mod 𝑟2), the
following relation holds modulo 𝑟2:

𝑦 ≡ 𝑋𝑑 ≡ (1 + 𝑟)𝑑 ≡ 1 + 𝑑𝑟 (mod 𝑟2) .

Shamir’s countermeasure generalizes to the elliptic curve scalar multiplication (cf. Section 2). In contrast,
Vigilant’s method does not readily lend itself to a generalization to elliptic curves. The reason is that there is
no equivalent of the binomial theorem. We adopt a different approach and rely on the theory of formal groups
as put forward in [26] for developing elliptic curve Paillier schemes. Doing so, we obtain a first efficient and
versatile method to protect elliptic curve cryptosystems against fault attacks.

It is well known that the singular elliptic curve over the finite prime field F𝑟 given by the Weierstraß
equation 𝑦2 = 𝑥3 is isomorphic to the additive group F+

𝑟 ; e.g., [34, Theorem 7.2]. Neves–Tibouchi [51] take
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advantage of this property to propose an efficient protection against fault attacks. They also extend their
method to other models (including Edwards curves) with [less efficient] multiplicative isomorphisms. As a
second contribution, we exhibit efficiently computable isomorphisms to the additive group (Z/𝑟Z)+ for all
elliptic curve models commonly used in cryptographic applications. This results in a second efficient and
versatile method to protect against fault attacks.

Organization
The rest of this paper is organized as follows. In the next section, we review variants of Shamir’s countermeasure
applied to ECC systems. Section 3 describes our general methodology for detecting faults with two possible
realizations. Next, in Section 4, we apply it to a variety of elliptic curve models. Finally, we conclude the paper
in Section 5.

2 Overcoming Fault Attacks

Shamir’s method generalizes to the elliptic curve scalar multiplication. We review hereafter two different imple-
mentations. The first countermeasure is due to Blömer–Otto–Seifert and known as the BOS countermeasure [13]
while the second one is due to Baek–Vasyltsov [3].

BOS countermeasure
As aforementioned, the main operation for elliptic curve cryptography is the scalar multiplication. Specifically,
the usual setting is the computation of 𝑄𝑄𝑄 = [𝑑]𝑃𝑃𝑃 on an elliptic curve 𝐸 defined over the prime field F𝑝, which
is given by the Weierstraß equation 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏. The BOS countermeasure proceeds in five steps:
1. For a (small) prime 𝑟, define an elliptic curve 𝐸′ over F𝑟 and a point 𝑃 ′𝑃 ′𝑃 ′ on 𝐸′;
2. Form the combined curve �̂� = CRT(𝐸,𝐸′) over Z/𝑝𝑟Z and the combined point 𝑃𝑃𝑃 = CRT(𝑃𝑃𝑃 ,𝑃 ′𝑃 ′𝑃 ′);
3. Compute �̂̂��̂�𝑄 = [𝑑]𝑃𝑃𝑃 on �̂�;
4. Compute 𝑄′𝑄′𝑄′ = [𝑑]𝑃 ′𝑃 ′𝑃 ′ on 𝐸′;
5. Check whether �̂̂��̂�𝑄 ≡𝑄′𝑄′𝑄′ (mod 𝑟), and

– if so, output 𝑄𝑄𝑄 = �̂̂��̂�𝑄 mod 𝑝;
– if not, return error.

Remark 2. If 𝑦2 = 𝑥3 + 𝑎′𝑥+ 𝑏′ is the equation defining the elliptic curve 𝐸′ over F𝑟, CRT(𝐸,𝐸′) denotes
the elliptic curve over Z/𝑝𝑟Z given by the equation 𝑦2 = 𝑥3 + �̂�𝑥+ �̂� where �̂� = CRT(𝑎 (mod 𝑝), 𝑎′ (mod 𝑟))

and �̂� = CRT(𝑏 (mod 𝑝), 𝑏′ (mod 𝑟)); i.e., such �̂� ≡ 𝑎 (mod 𝑝) and �̂� ≡ 𝑎′ (mod 𝑟), and idem for �̂�. Point 𝑃𝑃𝑃
is defined similarly from the coordinates of points 𝑃𝑃𝑃 and 𝑃 ′𝑃 ′𝑃 ′.

In a concrete implementation, prime 𝑟, curve 𝐸′ and point 𝑃 ′𝑃 ′𝑃 ′ are precomputed so that the order of point
𝑃 ′𝑃 ′𝑃 ′ on 𝐸′, ord𝐸′(𝑃 ′𝑃 ′𝑃 ′), is maximal. The value of 𝑛′ := ord𝐸′(𝑃 ′𝑃 ′𝑃 ′) together with 𝑟, the curve parameters and
point 𝑃 ′𝑃 ′𝑃 ′ are stored in non-volatile memory. This presents the further advantage that the computation of 𝑄′𝑄′𝑄′ in
Step 4 can be performed more efficiently as 𝑄′𝑄′𝑄′ = [𝑑 mod 𝑛′]𝑃 ′𝑃 ′𝑃 ′.

Baek–Vasyltsov’s countermeasure
Another variant of Shamir’s countermeasure was subsequently developed in [3]. Compared to the BOS
countermeasure, in a practical setting, it does not require pre-computed values and does not assume that the
parameter 𝑟 is prime.

Numerical experiments conducted in [35] however show that a non-negligible proportion of faults is
undetected and that larger bit-lengths for 𝑟 should be used. For example, for a 20-bit randomizer 𝑟, the average
proportion of undetected faults ranges from 23.2% to 37.3%. Moreover, by construction, Baek–Vasyltsov’s
countermeasure is restricted to a special Weierstraß model and makes use of less efficient addition formulas.
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3 The Ring Extension Method Revisited

In a way similar to Vigilant’s countermeasure for RSA, the adaptation of Shamir’s method to elliptic curves can
be improved by finding a shortcut in the evaluation of 𝑄′𝑄′𝑄′ = [𝑑]𝑃 ′𝑃 ′𝑃 ′ on 𝐸′ by an appropriate choice for 𝐸′ in the
BOS countermeasure. Further, for more versatility and better efficiency, it should work for any randomizer 𝑟

(i.e., not only prime values) and without the need of pre-computing and pre-storing curve orders.
The core idea is to replace in the BOS countermeasure the combined curve �̂� with

𝐸(F𝑝)×G′ ∼= 𝐸(F𝑝)× (Z/𝑟Z)+ ,

that is, a group isomorphic to the cross product of the groups 𝐸(F𝑝) and (Z/𝑟Z)+ and where the group G′ is
represented with elements having a group law that coincides (i.e., is compatible) with the group law used in
the representation of 𝐸(F𝑝).

We present two such realizations. In the first realization, G′ is chosen as the subgroup of points on an
elliptic curve over Z/𝑟2Z that reduce to the neutral point modulo 𝑟 [37]. The second realization modifies
a recent countermeasure due to Neves and Tibouchi [51, § 5]. The proposed methods are generic and can
readily be adapted to any elliptic curve model and corresponding addition formulas. Also, although focusing
on protecting elliptic curve computations over prime fields for the sake of concreteness, they can be generalized
to elliptic curve computations over arbitrary fields, including over binary fields.

3.1 First Realization

It is useful to introduce some notation. Given a commutative ring ℛ with 1, we let 𝐸(ℛ) denote the set of
rational points on an elliptic curve 𝐸 defined over ℛ.

For the ring ℛ = Z/𝑟2Z (namely, the ring of integers modulo 𝑟2), we define the order-𝑟 subgroup

G′ := 𝐸1(Z/𝑟2Z) =
{︀
𝑃𝑃𝑃 ∈ 𝐸(Z/𝑟2Z) | 𝑃𝑃𝑃 modulo 𝑟 reduces to 𝑂𝑂𝑂

}︀
where 𝑂𝑂𝑂 denotes the identity element on 𝐸(Z/𝑟Z). The analogue of the combined curve �̂� becomes

𝐸(F𝑝)× 𝐸1(Z/𝑟2Z) ⊆ 𝐸(Z/𝑝𝑟2Z) .

As will be made explicit in Section 4, the so-defined group G′ is isomorphic to (Z/𝑟Z)+ and the isomorphisms

ϒ1 : (Z/𝑟Z)+
∼−→ 𝐸1(Z/𝑟2Z),

{︃
0 ↦−→ ϒ1(0) = 𝑂𝑂𝑂

𝜗 ↦−→ ϒ1(𝜗) = 𝑃𝑃𝑃

and ϒ−1
1 are efficiently computable.

3.2 Second Realization

The authors of [51] suggest to choose G′ as the group of points on a degenerate curve over F𝑟. However, most
elliptic curve models (the Weierstraß model is a notable exception) do not have an additive degeneration: they
either degenerate to the (𝑟 − 1)-order multiplicative group F*

𝑟 or to the (𝑟 + 1)-order multiplicative subgroup
𝑇2(F𝑟) of elements of norm 1 in F*

𝑟2 [56]. In this case, the shortcut function translates into an exponentiation
modulo 𝑟 (degeneration to F*

𝑟) or into the evaluation of Lucas sequences modulo 𝑟 (degeneration to 𝑇2(F𝑟)).
Actually, it turns out that we can always identify a group G′ ∼= (Z/𝑟Z)+ from the group law in 𝐸 for a

particular choice for the curve parameters; we call 𝐸′ the corresponding curve. We so define the 𝑟-order group

G′ := 𝐸′(Z/𝑟Z)[𝑟] =
{︀
𝑃𝑃𝑃 satisfying the curve equation 𝐸′ modulo 𝑟 | [𝑟]𝑃𝑃𝑃 = 𝑂𝑂𝑂

}︀
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for the particular curve equation 𝐸′. Again, this comes with efficiently computable isomorphisms

ϒ2 : (Z/𝑟Z)+
∼−→ 𝐸′(Z/𝑟Z)[𝑟],

{︃
0 ↦−→ ϒ2(0) = 𝑂𝑂𝑂

𝜗 ↦−→ ϒ2(𝜗) = 𝑃𝑃𝑃

and ϒ−1
2 .

This will be illustrated in Section 4 with several elliptic curve models commonly used in cryptographic
applications. Further models are covered in Appendix A.

3.3 Implementation

The computation of 𝑄𝑄𝑄 = [𝑑]𝑃𝑃𝑃 on an elliptic curve 𝐸(F𝑝) in the presence of faults can be carried out as depicted
in Algorithms 1 and 2. Algorithm 1 corresponds to the first realization and Algorithm 2 corresponds to the
second realization.

Algorithm 1: Fault-protected scalar multiplication on elliptic curves (1)

Data: Point 𝑃𝑃𝑃 ∈ 𝐸(F𝑝) and private scalar 𝑑 ∈ Z
Result: Point 𝑄𝑄𝑄 = [𝑑]𝑃𝑃𝑃 ∈ 𝐸(F𝑝) or “error”

1 Randomly select a small integer 𝑟 and define the point 𝑃 ′𝑃 ′𝑃 ′ ← ϒ1(𝜗) ∈ 𝐸(Z/𝑟2Z) for some 𝜗 ∈ Z/𝑟Z;
2 Form the point 𝑃𝑃𝑃 ← CRT(𝑃𝑃𝑃 ,𝑃 ′𝑃 ′𝑃 ′) ∈ 𝐸(Z/𝑝𝑟2Z);
3 Compute �̂̂��̂�𝑄← [𝑑]𝑃𝑃𝑃 ∈ 𝐸(Z/𝑝𝑟2Z);
4 Compute 𝑄′𝑄′𝑄′ ← ϒ1(𝑑 · 𝜗 mod 𝑟) ∈ 𝐸(Z/𝑟2Z);
5 If (�̂̂��̂�𝑄 mod 𝑟2) ̸=𝑄′𝑄′𝑄′ return “error”;
6 Return �̂̂��̂�𝑄 mod 𝑝.

Algorithm 2: Fault-protected scalar multiplication on elliptic curves (2)

Data: Point 𝑃𝑃𝑃 ∈ 𝐸(F𝑝) and private scalar 𝑑 ∈ Z
Result: Point 𝑄𝑄𝑄 = [𝑑]𝑃𝑃𝑃 ∈ 𝐸(F𝑝) or “error”

1 Randomly select a small integer 𝑟 and define the point 𝑃 ′𝑃 ′𝑃 ′ ← ϒ2(𝜗) ∈ 𝐸′(Z/𝑟Z) for some 𝜗 ∈ Z/𝑟Z;
2 Form the curve equation �̂� ← CRT(𝐸,𝐸′) for some curve equation 𝐸′ and point

𝑃𝑃𝑃 ← CRT(𝑃𝑃𝑃 ,𝑃 ′𝑃 ′𝑃 ′) ∈ �̂�(Z/𝑝𝑟Z);
3 Compute �̂̂��̂�𝑄← [𝑑]𝑃𝑃𝑃 ∈ �̂�(Z/𝑝𝑟Z);
4 Compute 𝑄′𝑄′𝑄′ ← ϒ2(𝑑 · 𝜗 mod 𝑟) ∈ 𝐸′(Z/𝑟Z);
5 If (�̂̂��̂�𝑄 mod 𝑟) ̸=𝑄′𝑄′𝑄′ return “error”;
6 Return �̂̂��̂�𝑄 mod 𝑝.

Implementation notes
It is worth noting that in the “redundancy” step (i.e., Step 4 in Algorithms 1 and 2) the resulting point
𝑄′𝑄′𝑄′ = [𝑑 mod 𝑟]ϒ1(𝜗) (resp. 𝑄′𝑄′𝑄′ = [𝑑 mod 𝑟]ϒ2(𝜗)) is viewed as an element of G′ = 𝐸1(Z/𝑟2Z) (resp. of
G′ = 𝐸′(Z/𝑟Z)[𝑟]). This is much faster than computing a scalar multiplication in 𝐸(Z/𝑟2Z) (resp. in
𝐸′(Z/𝑟Z)). This also allows the reduction of 𝑑 modulo 𝑟, the group order of G′.

Furthermore, single points of failure like conditional branchings should be avoided in fault-resistant
implementations. The verification step (i.e., Step 5 in Algorithms 1 and 2) involves an if -branching. By
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inducing a fault during the comparison

(�̂̂��̂�𝑄 mod 𝑟2)
?
̸=𝑄′𝑄′

𝑄′ (resp. (�̂̂��̂�𝑄 mod 𝑟)
?
̸=𝑄′𝑄′

𝑄′) ,

an attacker may hope to force the comparison bit to 0 (i.e., false) and therefore get the value of �̂̂��̂�𝑄 mod 𝑝.
The if -branching can however be avoided by making use of the so-called “infective computation” technique [63].

For better fault coverage, it is recommended to choose 𝜗 in Step 1 of Algorithms 1 and 2 so that 𝑃 ′𝑃 ′𝑃 ′ is of
maximal order (i.e., of order 𝑟). Obtaining a generator for the additive group (Z/𝑟Z)+ is fairly easy since any
non-zero integer co-prime to 𝑟 generates (Z/𝑟Z)+. Two possible strategies are:
1. Take 1 as a generator or fix a priori a prime 𝜗 larger than the maximum value for 𝑟. Then (Z/𝑟Z)+ = ⟨1⟩

or (Z/𝑟Z)+ = ⟨𝜗⟩.
2. Select 𝑟 as a prime number. Then any non-zero integer 0 < 𝜗 < 𝑟 is a generator of (Z/𝑟Z)+.

The first strategy is preferred as it does not impose conditions on 𝑟.

4 Illustration

The proposed methods apply to many elliptic curve models. This is illustrated below with the (twisted)
Edwards model and the Weierstraß model. Applications to further models can be found in Appendix A.

4.1 Edwards Model

In [23], Edwards proposed a normal form for elliptic curves. It was later extended in [5] and subsequently in [6]
(see also [30]). The latter form, referred to as the twisted Edwards form, is given by the equation

𝐸E𝑎,𝑑
: 𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 . (1)

The neutral element is 𝑂𝑂𝑂 = (0, 1). The addition law is unified. Given two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2), their
sum (𝑥3, 𝑦3) = (𝑥1, 𝑦1)⊞ (𝑥2, 𝑦2) is given by

(𝑥3, 𝑦3) =

(︂
𝑥1𝑦2 + 𝑥2𝑦1

1 + 𝑑𝑥1𝑥2𝑦1𝑦2
,
𝑦1𝑦2 − 𝑎𝑥1𝑥2
1− 𝑑𝑥1𝑥2𝑦1𝑦2

)︂
. (2)

4.1.1 First Realization

We define:
𝐸E𝑎,𝑑,1(Z/𝑟

2Z) =
{︀
ϒ1(𝜗) = (𝜗 · 𝑟, 1) | 𝜗 ∈ Z/𝑟Z

}︀ ∼= (Z/𝑟Z)+ . (3)

In words, the group G′ = 𝐸E𝑎,𝑑,1(Z/𝑟
2Z) is the set of points (𝑥, 1) = (𝜗 · 𝑟, 1) on an Edwards curve (1) over

the ring Z/𝑟2Z, equipped with the addition law (2) . It is easily verified that:
1. ϒ1(𝜗) ≡ (𝜗 · 𝑟, 1) ≡ (0, 1) ≡ ϒ1(0) ≡ 𝑂𝑂𝑂 (mod 𝑟), and

2. ϒ1(𝜗1)⊞ϒ1(𝜗2) = (𝜗1 · 𝑟, 1)⊞ (𝜗2 · 𝑟, 1)
=

(︁
𝜗1·𝑟·1+𝜗2·𝑟·1

1 , 1·11

)︁
=

(︀
(𝜗1 + 𝜗2) · 𝑟, 1

)︀
= ϒ1(𝜗1 + 𝜗2)

as desired. We also have 𝐸E𝑎,𝑑,1(Z/𝑟
2Z) = ⟨(𝑟, 1)⟩.
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4.1.2 Second Realization

We have:

(Z/𝑟Z)+ ∼= 𝐸′
E0,0

(Z/𝑟Z)[𝑟] =
{︀
ϒ2(𝜗) = (𝜗, 1) | 𝜗 ∈ Z/𝑟Z

}︀
⊆ {︀

(𝑥, 𝑦) ∈ 𝐸′
E0,0

(Z/𝑟Z)
}︀

. (4)

In more detail, the group G′ = 𝐸′
E0,0)

(Z/𝑟Z)[𝑟] is the set of points (𝑥, 1) on an Edwards curve 𝐸′ given by
Eq. (1) with parameters 𝑎 = 𝑑 = 0, over the ring Z/𝑟Z, equipped with the addition law (2). When 𝑎 = 𝑑 = 0,
it immediately follows that:
1. ϒ2(0) = (0, 1) = 𝑂𝑂𝑂, and

2. ϒ2(𝜗1)⊞ϒ2(𝜗2) = (𝜗1, 1)⊞ (𝜗2, 1)

=
(︁
𝜗1·1+𝜗2·1

1 , 1·11

)︁
= (𝜗1 + 𝜗2, 1)

= ϒ2(𝜗1 + 𝜗2)

and 𝐸′
E0,0)

(Z/𝑟Z)[𝑟] = ⟨(1, 1)⟩.

4.2 Weierstraß Model

The Weierstraß model (e.g., [59, Chapter III]) is the most common way to represent an elliptic curve. It is
given by the equation 𝐸W𝑎,𝑏

: 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 or, using projective coordinates,

𝐸W𝑎,𝑏
: 𝑌 2𝑍 = 𝑋3 + 𝑎𝑋𝑍2 + 𝑏𝑍3 . (5)

The neutral element is the point at infinity 𝑂𝑂𝑂 = (0 : 1 : 0). A unified addition formula [46, Section 3]
(see also [47, 15, 36, 54]) for adding two projective points (𝑋1 : 𝑌1 : 𝑍1) and (𝑋2 : 𝑌2 : 𝑍2) is given by
(𝑋3 : 𝑌3 : 𝑍3) = (𝑋1 : 𝑌1 : 𝑍1)⊞ (𝑋2 : 𝑌2 : 𝑍2) where⎧⎪⎪⎨⎪⎪⎩

𝑋3 = (𝑌1𝑍2 + 𝑌2𝑍1)𝐴+ (𝑋1𝑌2 +𝑋2𝑌1)𝐵

𝑌3 = (𝑋1𝑍2 +𝑋2𝑍1)𝑀 + (𝑌1𝑌2 + 3𝑏𝑍1𝑍2)(𝑌1𝑌2 − 3𝑏𝑍1𝑍2)− 𝑎𝑁

𝑍3 = (𝑋1𝑌2 +𝑋2𝑌1)(𝑎𝑍1𝑍2 + 3𝑋1𝑋2) + (𝑌1𝑍2 + 𝑌2𝑍1)𝑉

(6)

with 𝐴 = 𝑎(𝑎𝑍1𝑍2 −𝑋1𝑋2)− 3𝑏(𝑋1𝑍2 +𝑋2𝑍1), 𝐵 = 𝑌1𝑌2 − 𝑎(𝑋1𝑍2 +𝑋2𝑍1)− 3𝑏𝑍1𝑍2, 𝑀 = 3𝑏(3𝑋1𝑋2 −
𝑎𝑍1𝑍2)−𝑎2(𝑋1𝑍2+𝑋2𝑍1), 𝑁 = (𝑎𝑍1𝑍2+3𝑋1𝑋2)(𝑎𝑍1𝑍2−𝑋1𝑋2), and 𝑉 = 𝑌1𝑌2+3𝑏𝑍1𝑍2+𝑎(𝑋1𝑍2+𝑋2𝑍1).
As detailed in [54, Algorithm 1], this can be evaluated with only 12 general multiplications plus 5 multiplications
by constants (namely, 𝑎 and 3𝑏).

4.2.1 First Realization

We define:
𝐸W𝑎,𝑏,1(Z/𝑟

2Z) =
{︀
ϒ1(𝜗) = (𝜗 · 𝑟 : 1 : 0) | 𝜗 ∈ Z/𝑟Z

}︀ ∼= (Z/𝑟Z)+ . (7)

Here again, it can be verified that ϒ1(𝜗) ≡ (𝜗 · 𝑟 : 1 : 0) ≡ (0 : 1 : 0) ≡ ϒ1(0) ≡ 𝑂𝑂𝑂 (mod 𝑟) and
that the addition formula (6) yields ϒ1(𝜗1) ⊞ ϒ1(𝜗2) = (𝜗1 · 𝑟 : 1 : 0) ⊞ (𝜗2 · 𝑟 : 1 : 0) =

(︀
(𝜗1 + 𝜗2) · 𝑟 :

1 : 0) = ϒ1(𝜗1 + 𝜗2) by observing that we then have 𝐴 = 0, 𝐵 = 1, 𝑀 = 𝑁 = 0, 𝑉 = 1 and thus
(𝑋3 : 𝑌3 : 𝑍3) =

(︀
(𝜗1 · 𝑟 · 1 + 𝜗2 · 𝑟 · 1) · 1 : 1 · 1 : (𝜗1 · 𝑟 · 1 + 𝜗2 · 𝑟 · 1) · 0 + 0 · 1

)︀
=

(︀
(𝜗1 + 𝜗2) · 𝑟 : 1 : 0

)︀
. We

also have 𝐸W𝑎,𝑏,1(Z/𝑟
2Z) = ⟨(𝑟 : 1 : 0)⟩.
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4.2.2 Second Realization

We have:

(Z/𝑟Z)+ ∼= 𝐸′
W0,0

(Z/𝑟Z)[𝑟] =
{︀
ϒ2(𝜗) = (𝜗 : 1 : 𝜗3) | 𝜗 ∈ Z/𝑟Z

}︀
⊆ {︀

(𝑋 : 𝑌 : 𝑍) ∈ 𝐸′
W0,0

(Z/𝑟Z)
}︀

. (8)

Similarly to the first realization, it can be verified that ϒ2(0) = (0 : 1 : 0) = 𝑂𝑂𝑂 and, when 𝑎 = 𝑏 = 0,
that the addition formula (6) yields ϒ2(𝜗1) ⊞ ϒ2(𝜗2) = (𝜗1 : 1 : 𝜗1

3) ⊞ (𝜗2 : 1 : 𝜗2
3) =

(︀
𝜗1 + 𝜗2 : 1 :

(𝜗1 + 𝜗2)3𝜗1𝜗2 + 𝜗1
3 + 𝜗2

3
)︀
=

(︀
𝜗1 + 𝜗2 : 1 : (𝜗1 + 𝜗2)

3
)︀
= ϒ2(𝜗1 + 𝜗2); and 𝐸′

W0,0
(Z/𝑟Z)[𝑟] = ⟨(1 : 1 : 1)⟩.

4.3 Comparison

The proposed methods share the advantages (but not the weaknesses!) of the Baek–Vasyltsov’s countermeasure:
they do not require pre-computed values in some non-volatile memory and do not suppose randomizer 𝑟

to be prime. Furthermore, they are more general as they are not restricted to a special type of Weierstraß
parametrization.

Another advantage of the proposed methods is that they carry the completeness of the addition law,
whatever the choice of the parameters. For example, for twisted Edwards curves, completeness is guaranteed
provided that curve parameter 𝑎 is a square and curve parameter 𝑑 is a non-square. Further, twisted Edwards
curves as given by Eq. (1) do not hold in characteristic 2. There are no such restrictions on G′ = 𝐸E𝑎,𝑑,1(Z/𝑟

2Z)
(cf. (3)) or on G′ = 𝐸′

E0,0
(Z/𝑟Z)[𝑟] (cf. (4)). Indeed, for any points 𝑃1𝑃1𝑃1 = (𝜗1 · 𝑟, 1) and 𝑃2𝑃2𝑃2 = (𝜗2 · 𝑟, 1) in

𝐸E𝑎,𝑑,1(Z/𝑟
2Z) (resp. 𝑃1𝑃1𝑃1 = (𝜗1, 1) and 𝑃2𝑃2𝑃2 = (𝜗2, 1) ∈ 𝐸′

E0,0
(Z/𝑟Z)[𝑟]), the addition formula given by Eq. (2)

remains always valid since the denominators always are equal to 1 and thus are invertible modulo 𝑟2 (resp.
modulo 𝑟), including for even values for 𝑟. The same conclusion holds true for the completeness of the Weierstraß
model as described in § 4.2 and the other models given in appendix.

Furthermore, unlike the BOS countermeasure, the order of the small curve is known in advance: by
construction, we have #G′ ∼= (Z/𝑟Z)+. Scalar 𝑑 in the computation of 𝑄′𝑄′𝑄′ in 𝐸1(Z/𝑟2Z) (resp. 𝐸′(Z/𝑟Z)) can
therefore be reduced modulo 𝑟. Because the BOS countermeasure makes use of general groups of points on an
elliptic curve, the group order is not so easily obtained; this is addressed by fixing randomizer 𝑟 once and for
all and by pre-computing (and storing) the group order for the curve modulo 𝑟. In our case, randomizer 𝑟 can
be freely selected on the fly, with a fresh value for each execution. In addition to better efficiency and easier
implementation, this offers better security guarantees and fault coverage.

Finally, the verification step essentially boils down to a mere modular multiplication modulo 𝑟 rather than
a full scalar multiplication on an elliptic curve.

5 Conclusion

This paper revisited the ring extension method over elliptic curves as presented in [13, 3]. The proposed
approaches apply to a variety of elliptic models and provide more practical countermeasures against fault
attacks.
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A.1.1 First Realization

We define:
𝐸J𝑎,𝑑,1(Z/𝑟

2Z) =
{︀
ϒ1(𝜗) = (𝜗 · 𝑟, 1) | 𝜗 ∈ Z/𝑟Z

}︀ ∼= (Z/𝑟Z)+ .

Analogously to the Edwards model (cf. § 4.1), it is easily verified that ϒ1(𝜗) ≡ (𝜗·𝑟, 1) ≡ (0, 1) ≡ ϒ1(0) ≡ 𝑂𝑂𝑂

(mod 𝑟) and that ϒ1(𝜗1)⊞ϒ1(𝜗2) = (𝜗1, 1)⊞ (𝜗2, 1) =
(︀
𝜗1·𝑟·1+𝜗2·𝑟·1

1 , 1·1
12

)︀
=

(︀
(𝜗1 +𝜗2) · 𝑟, 1

)︀
= ϒ1(𝜗1 +𝜗2).

A.1.2 Second Realization

We have:

(Z/𝑟Z)+ ∼= 𝐸′
J0,0

(Z/𝑟Z)[𝑟] =
{︀
ϒ2(𝜗) = (𝜗, 1) | 𝜗 ∈ Z/𝑟Z

}︀
⊆ {︀

(𝑥, 𝑦) ∈ 𝐸′
J0,0

(Z/𝑟Z)
}︀

.

As for the Edwards model, we have ϒ2(0) = (0, 1) = 𝑂𝑂𝑂 and, when 𝑎 = 𝑑 = 0, ϒ2(𝜗1) ⊞ ϒ2(𝜗2) =

(𝜗1, 1)⊞ (𝜗2, 1) =
(︀
𝜗1·1+𝜗2·1

1 , 1·1
12

)︀
= (𝜗1 + 𝜗2, 1) = ϒ2(𝜗1 + 𝜗2).

A.2 Jacobi Quadrics Intersection Model

Another way to represent an elliptic curve is as the intersection of two quadrics in P3 (see, e.g., [16]). Applications
to cryptography are discussed in [16, 29, 48]. The most general form [32] reads as

𝐸Q𝑎,𝑏
:

{︃
𝑎𝑥2 + 𝑦2 = 1

𝑏𝑥2 + 𝑧2 = 1
.

The neutral element is 𝑂𝑂𝑂 = (0, 1, 1). The unified sum of two points (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) is given by
(𝑥3, 𝑦2, 𝑧3) = (𝑥1, 𝑦1, 𝑧1)⊞ (𝑥2, 𝑦2, 𝑧2) where

(𝑥3, 𝑦3, 𝑧3) =

(︂
𝑥1𝑦2𝑧2 + 𝑥2𝑦1𝑧1
1− 𝑎𝑏𝑥12𝑥22

,
𝑦1𝑦2 − 𝑎𝑥1𝑧1𝑥2𝑧2

1− 𝑎𝑏𝑥12𝑥22
,
𝑧1𝑧2 − 𝑏𝑥1𝑦1𝑥2𝑦2

1− 𝑎𝑏𝑥12𝑥22

)︂
.

A.2.1 First Realization

We define:
𝐸Q𝑎,𝑏,1(Z/𝑟

2Z) =
{︀
ϒ1(𝜗) = (𝜗 · 𝑟, 1, 1) | 𝜗 ∈ Z/𝑟Z

}︀ ∼= (Z/𝑟Z)+ .

A straightforward calculation shows that ϒ1(𝜗) ≡ (𝜗 · 𝑟, 1, 1) ≡ (0, 1, 1) ≡ ϒ1(0) ≡ 𝑂𝑂𝑂 (mod 𝑟) and that
ϒ1(𝜗1)⊞ϒ1(𝜗2) = (𝜗1 ·𝑟, 1, 1)⊞ (𝜗2 ·𝑟, 1, 1) =

(︀
𝜗1·𝑟·1·1+𝜗2·𝑟·1·1

1 , 1·11 , 1·11
)︀
=

(︀
(𝜗1+𝜗2) ·𝑟, 1, 1)

)︀
= ϒ1(𝜗1+𝜗2).

A.2.2 Second Realization

We have:

(Z/𝑟Z)+ ∼= 𝐸′
Q0,0

(Z/𝑟Z)[𝑟] =
{︀
ϒ2(𝜗) = (𝜗, 1, 1) | 𝜗 ∈ Z/𝑟Z

}︀
⊆ {︀

(𝑥, 𝑦, 𝑧) ∈ 𝐸𝒬0,0
(Z/𝑟Z)

}︀
.

It can be checked that ϒ2(0) = (0, 1, 1) = 𝑂𝑂𝑂 and, when 𝑎 = 𝑏 = 0, that ϒ2(𝜗1)⊞ϒ2(𝜗2) = (𝜗1, 1, 1)⊞
(𝜗2, 1, 1) =

(︀
𝜗1·1·1+𝜗2·1·1

1 , 1·11 , 1·11
)︀
= (𝜗1 + 𝜗2, 1, 1) = ϒ2(𝜗1 + 𝜗2).
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A.3 Hessian Model

Hessian curves [28] were generalized, modified, and extended for cryptographic applications in several works,
including [38, 60, 7, 25]. We follow the presentation of [7] where the neutral element is 𝑂𝑂𝑂 = (0,−1). The curve
equation is

𝐸H𝑎,𝑑
: 𝑎𝑥3 + 𝑦3 + 1 = 𝑑𝑥𝑦 .

The unified sum (𝑥3, 𝑦3) = (𝑥1, 𝑦1)⊞ (𝑥2, 𝑦2) of two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by

(𝑥3, 𝑦3) =

(︂
𝑥1 − 𝑦1

2𝑥2𝑦2
𝑎𝑥1𝑦1𝑥22 − 𝑦2

,
𝑦1𝑦2

2 − 𝑎𝑥1
2𝑥2

𝑎𝑥1𝑦1𝑥22 − 𝑦2

)︂
.

A.3.1 First Realization

We define:
𝐸H𝑎,𝑑,1(Z/𝑟

2Z) =
{︀
ϒ1(𝜗) = (3𝜗 · 𝑟,−1− 𝑑𝜗 · 𝑟) | 𝜗 ∈ Z/𝑟Z

}︀ ∼= (Z/𝑟Z)+ .

Again, it can be verified that ϒ1(𝜗) ≡ (3𝜗 · 𝑟,−1 − 𝑑𝜗 · 𝑟) ≡ (0,−1) ≡ ϒ1(0) ≡ 𝑂𝑂𝑂 (mod 𝑟). A quick
inspection shows that the above addition law for computing ϒ1(𝜗1)⊞ϒ1(𝜗2) = (3𝜗1 · 𝑟,−1−𝑑𝜗1 · 𝑟)⊞ (3𝜗2 · 𝑟,
−1− 𝑑𝜗2 · 𝑟) incurs the value of −(−1− 𝑑𝜗2 · 𝑟) = 1 + 𝑑𝜗2 · 𝑟 in the denominator. We therefore must have
𝑑𝜗2 · 𝑟 ̸= −1 (mod 𝑟2). This is always satisfied since 𝑑𝜗2 · 𝑟 ≡ −1 (mod 𝑟2) would imply 0 ≡ −1 (mod 𝑟).
Hence, the sum is always defined and is given by as ϒ1(𝜗1)⊞ϒ1(𝜗2) =

(︀3𝜗1·𝑟−(−1−𝑑𝜗1·𝑟)2·(3𝜗2·𝑟)·(−1−𝑑𝜗2·𝑟)
−(−1−𝑑𝜗2·𝑟) ,

(−1−𝑑𝜗1·𝑟)·(−1−𝑑𝜗2·𝑟)2
−(−1−𝑑𝜗2·𝑟)

)︀
=

(︀
3𝜗1·𝑟+3𝜗2·𝑟

1+𝑑𝜗2·𝑟 , −1−𝑑𝜗1·𝑟−𝑑𝜗2·𝑟
1

)︀
=

(︀
3(𝜗1+𝜗2) ·𝑟,−1−𝑑(𝜗1+𝜗2) ·𝑟

)︀
= ϒ1(𝜗1+𝜗2),

noting that (1 + 𝑑𝜗2 · 𝑟)−1 = 1− 𝑑𝜗2 · 𝑟 and that (3𝜗1 · 𝑟 + 3𝜗2 · 𝑟)(1− 𝑑𝜗2 · 𝑟) = 3(𝜗1 + 𝜗2) · 𝑟.

A.3.2 Second Realization

We have:

(Z/𝑟Z)+ ∼= 𝐸′
H0,0

(Z/𝑟Z)[𝑟] =
{︀
ϒ2(𝜗) = (𝜗,−1) | 𝜗 ∈ Z/𝑟Z

}︀
⊆ {︀

(𝑥, 𝑦) ∈ 𝐸′
H0,0

(Z/𝑟Z)
}︀

.

Likewise, we have ϒ2(0) = (0,−1) = 𝑂𝑂𝑂 and the addition law when 𝑎 = 𝑑 = 0 yields ϒ2(𝜗1)⊞ϒ2(𝜗2) =

(𝜗1,−1)⊞ (𝜗2,−1) =
(︀𝜗1−(−1)2𝜗2(−1)

−(−1)
,
(−1)(−1)2

−(−1)

)︀
= (𝜗1 + 𝜗2,−1) = ϒ2(𝜗1 + 𝜗2).

A.4 Huff’s Model

Huff curves, after [33], were introduced for cryptographic applications in [41]. The most general form as
presented in [52] (see also [19, 62]) is given by the equation

𝐸ℋ𝑎,𝑐,𝑑
: 𝑦(𝑎𝑥2 + 1) = 𝑐𝑥(𝑑𝑦2 + 1)

with neutral element 𝑂𝑂𝑂 = (0, 0). The unified addition formula of points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by
(𝑥3, 𝑦3) = (𝑥1, 𝑦1)⊞ (𝑥2, 𝑦2) where

(𝑥3, 𝑦3) =

(︂
(𝑥1 + 𝑥2)(1− 𝑑𝑦1𝑦2)

(1− 𝑎𝑥1𝑥2)(1 + 𝑑𝑦1𝑦2)
,

(𝑦1 + 𝑦2)(1− 𝑎𝑥1𝑥2)

(1 + 𝑎𝑦1𝑦2)(1− 𝑑𝑥1𝑥2)

)︂
.

A.4.1 First Realization

We define:
𝐸ℋ𝑎,𝑐,𝑑,1(Z/𝑟

2Z) =
{︀
ϒ1(𝜗) = (𝜗 · 𝑟, 𝑐 𝜗 · 𝑟) | 𝜗 ∈ Z/𝑟Z

}︀ ∼= (Z/𝑟Z)+ .



14 Marc Joye, Protecting ECC Against Fault Attacks

The correctness follows by observing that ϒ1(𝜗) ≡ (𝜗 ·𝑟, 𝑐 𝜗 ·𝑟) ≡ (0, 0) ≡ ϒ1(0) ≡ 𝑂𝑂𝑂 (mod 𝑟) and that the
addition law leads to ϒ1(𝜗1)⊞ϒ1(𝜗2) = (𝜗1 · 𝑟, 𝑐 𝜗1 · 𝑟)⊞ (𝜗2 · 𝑟, 𝑐 𝜗2 · 𝑟) =

(︀ (𝜗1·𝑟+𝜗2·𝑟)·1
1·1 ,

(𝑐 𝜗1·𝑟+𝑐 𝜗2·𝑟)·1
1·1

)︀
=(︀

(𝜗1 + 𝜗2) · 𝑟, 𝑐(𝜗1 + 𝜗2) · 𝑟
)︀
= ϒ1(𝜗1 + 𝜗2).

A.4.2 Second Realization

Fix 𝑐 ∈ Z/𝑟Z. We have:

(Z/𝑟Z)+ ∼= 𝐸′
ℋ0,𝑐,0

(Z/𝑟Z)[𝑟] =
{︀
ϒ2(𝜗) = (𝜗, 𝑐 · 𝜗) | 𝜗 ∈ Z/𝑟Z

}︀
⊆ {︀

(𝑥, 𝑦) ∈ 𝐸′
ℋ0,𝑐,0

(Z/𝑟Z)
}︀

.

We observe that ϒ2(0) = (0, 0) = 𝑂𝑂𝑂 and, when (𝑎, 𝑐, 𝑑) = (0, 𝑐, 0), the addition law gives ϒ2(𝜗1)⊞ϒ2(𝜗2) =

(𝜗1, 𝑐 · 𝜗1)⊞ (𝜗2, 𝑐 · 𝜗2) = (𝜗1 + 𝜗2, 𝑐 · 𝜗1 + 𝑐 · 𝜗2) = ϒ2(𝜗1 + 𝜗2).
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