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2 Université catholique de Louvain, Crypto Group

3 Google Inc. and Columbia University

Abstract. Verifiability is central to building protocols and systems with
integrity. Initially, efficient methods employed the Fiat-Shamir heuris-
tics. Since 2008, the Groth-Sahai techniques have been the most effi-
cient in constructing non-interactive witness indistinguishable and zero-
knowledge proofs for algebraic relations in the standard model. For the
important task of proving membership in linear subspaces, Jutla and
Roy (Asiacrypt 2013) gave significantly more efficient proofs in the quasi-
adaptive setting (QA-NIZK). For membership of the row space of a t×n
matrix, their QA-NIZK proofs save Ω(t) group elements compared to
Groth-Sahai. Here, we give QA-NIZK proofs made of a constant number
group elements – regardless of the number of equations or the number of
variables – and additionally prove them unbounded simulation-sound. Un-
like previous unbounded simulation-sound Groth-Sahai-based proofs, our
construction does not involve quadratic pairing product equations and
does not rely on a chosen-ciphertext-secure encryption scheme. Instead,
we build on structure-preserving signatures with homomorphic proper-
ties. We apply our methods to design new and improved CCA2-secure
encryption schemes. In particular, we build the first efficient threshold
CCA-secure keyed-homomorphic encryption scheme (i.e., where homo-
morphic operations can only be carried out using a dedicated evaluation
key) with publicly verifiable ciphertexts.

1 Introduction

Non-interactive zero-knowledge proofs [6] play a fundamental role in the design
of numerous cryptographic protocols. Unfortunately, until breakthrough results
in the last decade [19–21], it was not known how to construct them efficiently
without appealing to the random oracle methodology [5]. Groth and Sahai [21]
described very efficient non-interactive witness indistinguishable (NIWI) and
zero-knowledge (NIZK) proof systems for algebraic relations in groups equipped
with a bilinear map. For these specific languages, the methodology of [21] does
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not require any proof of circuit satisfiability but rather leverages the properties
of homomorphic commitments in bilinear groups. As a result, the length of each
proof only depends on the number of equations and the number of variables.

While dramatically more efficient than general NIZK proofs, the GS tech-
niques remain significantly more expensive than non-interactive proofs obtained
from the Fiat-Shamir heuristic [18] in the random oracle model [5]: for example,
proving that t variables satisfy a system of n linear equations demands Θ(t+n)
group elements where Σ-protocols allow for O(t)-size proofs. In addition, GS
proofs are known to be malleable which, although useful in certain applica-
tions [3, 11], is undesirable when NIZK proofs serve as building blocks for non-
malleable protocols. To construct chosen-ciphertext-secure encryption schemes
[36], for example, the Naor-Yung/Sahai [32, 37] paradigm requires NIZK proofs
satisfying a property called simulation-soundness [37]: informally, this property
captures the inability of the adversary to prove false statements, even after hav-
ing observed simulated proofs for possibly false statements of its choice.

Groth-Sahai proofs can be made simulation-sound using ideas suggested in
[20, 9, 22]. However, even when starting from a linear equation, these techniques
involve proofs for quadratic equations, which results in longer proofs. One-time
simulation-soundness (i.e., where the adversary only sees one simulated proof)
is more economical to achieve as shown in [25, 27]. Jutla and Roy suggested a
more efficient way to achieve a form of one-time simulation-soundness [23].

Quasi-Adaptive NIZK Proofs. For languages consisting of linear subspaces of a
vector space, Jutla and Roy [24] recently showed how to significantly improve
upon the efficiency of the GS paradigm in the quasi-adaptive setting. In quasi-
adaptive NIZK proofs (QA-NIZK) for a class of languages {Lρ} parametrized
by ρ, the common reference string (CRS) is allowed to depend on the particular
language Lρ of which membership must be proved. At the same time, a single
simulator should be effective for the whole class of languages {Lρ}. As pointed
out in [24], QA-NIZK proofs are sufficient for many applications of Groth-Sahai
proofs. In this setting, Jutla and Roy [24] gave very efficient QA-NIZK proofs of
membership in linear subspaces. If A ∈ Zt×np is a matrix or rank t < n, in order

to prove membership of the language L = {v ∈ Gn | ∃x ∈ Ztp s.t. v = gx·A},
the Jutla-Roy proofs only take O(n − t) group elements – instead of O(n + t)
in [21] – at the expense of settling for computational soundness. While highly
efficient in the case t ≈ n, these proofs remain of linear size in n and may result
in long proofs when t � n, as is the case in, e.g., certain applications of the
Naor-Yung paradigm [9]. In the general case, we are still lacking a method for
building proofs of size O(t) – at least without relying on non-falsifiable assump-
tions [31] – which contrasts with the situation in the random oracle model.

The problem is even harder if we aim for simulation-soundness. While the
Jutla-Roy solutions [24] nicely interact with their one-time simulation-sound
proofs [23], they do not seem to readily extend into unbounded simulation-sound
(USS) proofs (where the adversary can see an arbitrary number of simulated
proofs before outputting a proof of its own) while retaining the same efficiency.
For this reason, although they can be applied in specific cases like [9], we can-
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not always use them in a modular way to build IND-CCA2-secure encryption
schemes when security definitions involve many challenge ciphertexts.

Our Contributions. Recently [28], it was observed that structure-preserving
signatures (SPS) [2, 1] with homomorphic properties have unexpected applica-
tions in the design of non-malleable structure-preserving commitments. Here, we
greatly extend their range of applications and demonstrate that they can sur-
prisingly be used (albeit non-generically) in the design of strongly non-malleable
primitives like simulation-sound proofs and CCA2-secure cryptosystems.

Concretely, we describe unbounded simulation-sound QA-NIZK proofs of
constant-size for linear subspaces. The length of a proof does not depend on
the number of equations or the number of variables, but only on the underlying
assumption. Like those of [24], our proofs are computationally sound under stan-
dard assumptions. Somewhat surprisingly, they are even asymptotically shorter
than random-oracle-based proofs derived from Σ-protocols.

Moreover, our construction provides unbounded simulation-soundness. Under
the Decision Linear assumption [7], we obtain QA-NIZK arguments made of 15
group elements and a one-time signature with its verification key. As it turns out,
it is also the first unbounded simulation-sound proof system that does not involve
quadratic pairing product equations or a CCA2-secure encryption scheme. Effi-
ciency comparisons show that we only need 20 group elements per proof where
the best USS extension [9] of Groth-Sahai costs 6t + 2n + 52 group elements.
Under the k-linear assumption, the proof length becomes O(k2) and thus avoids
any dependency on the subspace dimension. Our system builds on the linearly
homomorphic structure-preserving signatures of Libert et al. [28], which can sign
vectors of group elements without knowing their discrete logarithms.

For applications, like CCA2 security [32, 37], where only one-time simulation-
soundness is needed, we further optimize our proof system and obtain a relatively
simulation-sound QA-NIZK proof system, as defined in [23], with constant-size
proofs. Under the DLIN assumption (resp. the k-linear assumption), we achieve
relative simulation-soundness with only 4 (resp. k + 2) group elements!

As a first application of our USS proofs, we build a chosen-ciphertext-secure
keyed-homomorphic system with threshold decryption. Keyed-homomorphic en-
cryption is a primitive, suggested by Emura et al. [16], where homomorphic
ciphertext manipulations are only possible to a party holding a devoted evalu-
ation key SKh which, by itself, does not enable decryption. The scheme should
provide IND-CCA2 security when the evaluation key is unavailable to the ad-
versary and remain IND-CCA1 secure when SKh is exposed. Other approaches
to reconcile homomorphism and non-malleability were taken in [33–35, 8, 11] but
they inevitably satisfy weaker security notions than adaptive chosen-ciphertext
security [36]. The results of [16] showed that CCA2-security does not rule out ho-
momorphicity when the capability to compute over encrypted data is restricted.

Emura et al. [16] gave chosen-ciphertext-secure keyed-homomorphic schemes
based on hash proof systems [13]. However, these do not readily enable threshold
decryption – as would be desirable in voting protocols – since valid ciphertexts
are not publicly recognizable, which makes it harder to prove CCA security in
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the threshold setting. Also, these solutions are not known to satisfy the strongest
security definition of [16]. The reason is that this definition seemingly requires
a form of unbounded simulation-soundness. Our QA-NIZK proofs fulfill this re-
quirement and provide an efficient CCA2-secure threshold keyed-homomorphic
system where ciphertexts are 65% shorter than in instantiations of the same high-
level idea using previous simulation-sound proofs. The resulting system can be
used in scalable elections [26] where the vote aggregation is organized within a
hierarchy and can only be performed by tallying authorities in a certain order.

Using our relatively simulation-sound QA-NIZK proofs, we build new adap-
tively secure non-interactive threshold cryptosystems [14, 15] with CCA2 security
and improved efficiency. The constructions of [27] were improved by Escala et
al. [17]. So far, the most efficient solution is obtained from the Jutla-Roy results
[23, 24] via relatively sound proofs [23]. Using our relatively sound QA-NIZK
proofs, we shorten ciphertexts by Θ(k) elements under the k-linear assumption.

Our Techniques. In our unbounded simulation-sound proofs, each QA-NIZK
proof can be seen as a Groth-Sahai NIWI proof of knowledge of a one-time
linearly homomorphic signature on the vector that allegedly belongs to the linear
subspace. Here, the NIWI proof is generated for a Groth-Sahai CRS that depends
on the verification key of a one-time signature (following an idea of Malkin
et al. [30] which extends Waters’ techniques [39]), the private key of which is
used to sign the entire proof so as to prevent re-randomizations. The reason
why it provides unbounded simulation-soundness is that, with non-negligible
probability, the CRS is perfectly hiding on all simulated proofs and extractable
in the adversarially-generated fake proof. Hence, if the adversary manages to
prove membership of a vector outside the linear subspace, the reduction is able
to extract a homomorphic signature that it would not have been able to compute
itself, thereby breaking the DLIN assumption. At a high level, the system can
be seen as a two-tier proof system made of a non-malleable proof of knowledge
of a malleable proof of membership.

In our optimized relatively-sound proofs, we adapt ideas of Jutla and Roy
[23] and combine the one-time linearly homomorphic signature of [28] with a
smooth-projective hash function [13].

Our threshold keyed-homomorphic scheme combines a hash proof system and
a publicly verifiable USS proof that the ciphertext is well-formed. The keyed-
homomorphic property is achieved by using the simulation trapdoor of the proof
system as an evaluation key SKh, allowing the evaluator to generate proofs
without the witnesses. As implicitly done in [16] using hash proof systems, the
simulation trapdoor is used in the scheme and not only in the security proof.

2 Background and Definitions

2.1 Quasi-Adaptive NIZK Proofs

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is
allowed to depend on the specific language for which proofs have to be generated.
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The CRS is divided into a fixed part Γ , produced by an algorithm K0, and a
language-dependent part ψ. However, there should be a single simulator for the
entire class of languages.

Let λ be a security parameter. For public parameters Γ produced by K0, let
DΓ be a probability distribution over a set of relations R = {Rρ} parametrized
by a string ρ with an associated language Lρ = {x | ∃w : Rρ(x,w) = 1}.

We consider proof systems where the prover and the verifier both take a label
lbl as additional input. For example, this label can be the message-carrying part
of an Elgamal-like encryption. Formally, a tuple of algorithms (K0,K1,P,V) is a
QA-NIZK proof system for R if there exists a PPT simulator (S1,S2) such that,
for any PPT adversaries A1,A2 and A3, we have the following properties:

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x,w, lbl)← A1(Γ, ψ, ρ);

π ← P(ψ, x,w, lbl) : V(ψ, x, π, lbl) = 1 if Rρ(x,w) = 1] = 1.

Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x, π, lbl)← A2(Γ, ψ, ρ) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ).

Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ, ρ) = 1] ≈

Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ) : AS(ψ,τsim,.,.,.)
3 (Γ, ψ, ρ) = 1],

where
- P(ψ, ., ., .) emulates the actual prover. It takes as input (x,w) and lbl and

outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.
- S(ψ, τsim, ., ., .) is an oracle that takes as input (x,w) and lbl. It outputs

a simulated proof S2(ψ, τsim, x, lbl) if (x,w) ∈ Rρ and ⊥ if (x,w) 6∈ Rρ.

We assume that the CRS ψ contains an encoding of ρ, which is thus available to
V. The definition of Quasi-Adaptive Zero-Knowledge requires a single simulator
for the entire family of relations R.

2.2 Simulation-Soundness and Relative Soundness

It is often useful to have a property called simulation-soundness, which requires
that the adversary be unable to prove false statements even after having seen
simulated proofs for possibly false statements.

Unbounded Simulation-Soundness: For any PPT adversary A4,

Pr[ Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ);

(x, π, lbl)← AS2(ψ,τsim,.,.)
4 (Γ, ψ, ρ) : V(ψ, x, π, lbl) = 1

∧ ¬(∃w : Rρ(x,w) = 1) ∧ (x, π, lbl) 6∈ Q] ∈ negl(λ),
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where the adversary is allowed unbounded access to an oracle S2(ψ, τ, ., .)
that takes as input statement-label pairs (x, lbl) (where x may be outside
Lρ) and outputs simulated proofs π ← S2(ψ, τsim, x, lbl) before updating the
set Q = Q ∪ {(x, π, lbl)}, which is initially empty.

In the weaker notion of one-time simulation-soundness, only one query to the S2
oracle is allowed.

In some applications, one may settle for a weaker notion, called relative
soundness by Jutla and Roy [23], which allows for more efficient proofs, es-
pecially in the single-theorem case. Informally, relatively sound proof systems
involve both a public verifier and a private verification algorithm, which has ac-
cess to a trapdoor. For hard languages, the two verifiers should almost always
agree on any adversarially-created proof. Moreover, the private verifier should
not accept a non-trivial proof for a false statement, even if the adversary has
already seen proofs for false statements.

A labeled single-theorem relatively sound QA-NIZK proof system is com-
prised of a quasi-adaptive labeled proof system (K0,K1,P,V) along with an effi-
cient private verifier W and an efficient simulator (S1,S2). Moreover, the follow-
ing properties should hold for any PPT adversaries (A1,A2,A3,A4).

Quasi Adaptive Relative Single-Theorem Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x,w, lbl, s)←

AV(ψ,.,.)
1 (Γ, ψ, ρ);π ← P(ψ, ρ, x, w, lbl) : AV(ψ,.,.)

2 (π, s) = 1]

≈ Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τ)← S1(Γ, ρ); (x,w, lbl, s)←

AW(ψ,τ,.,.)
1 (Γ, ψ, ρ);π ← S2(ψ, ρ, τ, x, lbl) : AW(ψ,τ,.,.)

2 (π, s) = 1],

Here, A1 is restricted to choosing (x,w) such that Rρ(x,w) = 1.

Quasi Adaptive Relative Single-Theorem Simulation-Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τ)← S1(Γ, ρ); (x, lbl, s)← AW(ψ,τ,.,.)
3 (Γ, ψ, ρ);

π ← S2(ψ, ρ, τ, x, lbl) : (x′, lbl′, π′)← AW(ψ,τ,.,.)
4 (s, π) : (x, π, lbl) 6= (x′, π′, lbl′)

∧ 6 ∃w′ s.t. Rρ(x
′, w′) = 1 ∧ W(ψ, τ, x′, lbl′, π′) = 1] ∈ negl(λ)

2.3 Definitions for Threshold Keyed-Homomorphic Encryption

A (t,N)-threshold keyed-homomorphic encryption scheme consists of the follow-
ing algorithms.

Keygen(λ, t,N): inputs a security parameter λ and integers t,N ∈ poly(λ)
(with 1 ≤ t ≤ N), where N is the number of decryption servers and t ≤ N is
the decryption threshold. It outputs a public key PK, a homomorphic eval-
uation key SKh, a vector of private key shares SKd = (SKd,1, . . . , SKd,N )
and a vector of verification keys VK = (V K1, . . . , V KN ). For each i, the
decryption server i is given the share (i, SKd,i). The verification key V Ki

will be used to check the validity of decryption shares generated using SKd,i.
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Encrypt(PK,M): takes a input a public key PK and a plaintext M . It outputs
a ciphertext C.

Ciphertext-Verify(PK,C): takes as input a public key PK and a ciphertext
C. It outputs 1 if C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK, i, SKd,i, C): on input of a public key PK, a ciphertext C
and a private-key share (i, SKd,i), this (possibly randomized) algorithm out-
puts a special symbol (i,⊥) if Ciphertext-Verify(PK,C) = 0. Otherwise,
it outputs a decryption share µi = (i, µ̂i).

Share-Verify(PK, V Ki, C, µi): takes in PK, the verification key V Ki, a ci-
phertext C and a purported decryption share µi = (i, µ̂i). It outputs either
1 or 0. In the former case, µi is said to be a valid decryption share. We adopt
the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, C, {µi}i∈S): takes as input (PK,VK, C) and a t-subset
S ⊂ {1, . . . , N} with decryption shares {µi}i∈S . It outputs either a plaintext
M or ⊥ if {µi}i∈S contains invalid shares.

Eval(PK,SKh, C
(1), C(2)): takes as input PK, the evaluation key SKh and

ciphertexts C(1), C(2). If Ciphertext-Verify(PK,C(j)) = 0 for some j ∈
{1, 2}, the algorithm returns ⊥. Otherwise, it conducts a binary homomor-
phic operation over C(1) and C(2) and outputs a ciphertext C.

The above syntax assumes a trusted dealer. It generalizes that of ordinary thresh-
old cryptosystems. By setting SKh = ε and discarding the evaluation algorithm,
we obtain a classical threshold system.

Definition 1. A threshold keyed-homomorphic public-key cryptosystem is se-
cure against chosen-ciphertext attacks (or KH-CCA secure) if no PPT adversary
has noticeable advantage in this game:

1. The challenger runs Keygen(λ) to obtain a public key PK, vectors SKd

and VK and a homomorphic evaluation key SKh. It gives PK and VK to
the adversary A and keeps (SKh,SKd) to itself. In addition, the challenge
initializes a set D ← ∅, which is initially empty.

2 On multiple occasions, A adaptively invokes the following oracles:
- Corruption query: at any time, A may decide to corrupt a decryption

server. To this end, it specifies an index i ∈ {1, . . . , N} and obtains the
private key share SKd,i.

- Evaluation query: A can invoke the evaluation oracle Eval(SKh, .) on a
pair (C(1), C(2)) of ciphertexts of its choice. If there exists j ∈ {1, 2}
such that Ciphertext-Verify(PK,C(j)) = 0, return ⊥. Otherwise, the
oracle Eval(SKh, .) computes C ← Eval(SKh, C

(1), C(2)) and returns C.
In addition, if C(1) ∈ D or C(2) ∈ D, it sets D ← D ∪ {C}.

- Reveal query: at any time, A may also decide to corrupt the evaluator
by invoking the RevHK oracle on a unique occasion. The oracle responds
by returning SKh.

- Partial decryption query: A can also choose arbitrary ciphertexts C and
indexes i ∈ {1, . . . , n}. If Ciphertext-Verify(PK,C) = 0 or if C ∈ D,
the oracle returns ⊥. Otherwise, the oracle returns the decryption share
µi ← Share-Decrypt(PK, i, SKd,i, C).
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3. The adversary A chooses two equal-length messages M0,M1 and obtains
C? = Encrypt(PK,Mβ) for some random bit β R← {0, 1}. In addition,
the challenger sets D ← D ∪ {C?}.

4. A makes further queries as in step 2 with some restrictions. Namely, A
cannot corrupt more than t−1 servers throughout the entire game. Moreover,
if A chooses to obtain SKh (via the RevHK oracle) at some point, no more
post-challenge decryption query is allowed beyond that point.

5. A outputs a bit β′ and is deemed successful if β′ = β. As usual, A’s advantage
is measured as the distance Adv(A) = |Pr[β′ = β]− 1

2 |.

Note that, even if A chooses to obtain SKh immediately after having seen the
public key PK, it still has access to the decryption oracle before the challenge
phase. In other words, the scheme should remain IND-CCA1 if A is given PK
and SKh at the outset of the game. After the challenge phase, decryption queries
are allowed until the moment when the adversary obtains SKh.

In [16], Emura et al. suggested a weaker definition where the adversary is not
allowed to query the evaluation oracle on derivatives of the challenge ciphertext.
As a consequence, the set D is always the singleton {C?} after step 3. In this
paper, we will stick to the stronger definition.

2.4 Hardness Assumptions

We will use symmetric bilinear maps e : G×G→ GT over groups of prime order
p, but extensions to the asymmetric setting e : G× Ĝ→ GT are possible.

Definition 2 ([7]). The Decision Linear Problem (DLIN) in G, is to dis-
tinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), where
a, b, c, d R← Zp, z R← Zp.

We sometimes use the Simultaneous Double Pairing (SDP) assumption, which
is weaker than DLIN. As noted in [10], any algorithm solving SDP immediately
yields a DLIN distinguisher.

Definition 3. The Simultaneous Double Pairing problem (SDP) in (G,GT )
is, given group elements (gz, gr, hz, hu) ∈ G4, to find a non-trivial triple (z, r, u) ∈
G3\{(1G, 1G, 1G)} such that e(gz, z) · e(gr, r) = 1GT

and e(hz, z) · e(hu, u) = 1GT
.

2.5 Linearly Homomorphic Structure-Preserving Signatures

Linearly homomorphic SPS schemes are homomorphic signatures where mes-
sages and signatures live in the domain group G (see [28] for syntactic defi-
nitions) of a bilinear map. Libert et al. [28] described the following one-time
construction and proved its security under the SDP assumption. By “one-time”,
we mean that only one linear subspace can be signed using a given key pair.
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Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of vectors
to be signed, choose bilinear group (G,GT ) of prime order p > 2λ. Choose
gz, gr, hz, hu

R← G. Then, for i = 1 to n, pick χi, γi, δi
R← Zp and compute

gi = gz
χigr

γi and hi = hz
χihu

δi . The private key is sk = {(χi, γi, δi)}ni=1

while the public key is pk =
(
gz, gr, hz, hu, {(gi, hi)}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign (M1, . . . ,Mn) ∈ Gn using sk = {(χi, γi, δi)}ni=1,
return (z, r, u) =

(∏n
i=1M

−χi

i ,
∏n
i=1M

−γi
i ,

∏n
i=1M

−δi
i

)
∈ G3.

SignDerive(pk, {(ωi, σ
(i))}`

i=1): given a public key pk and ` tuples (ωi, σ
(i)),

where ωi ∈ Zp for each i, parse σ(i) as σ(i) =
(
zi, ri, ui

)
∈ G3 for i = 1 to `.

Then, compute and return σ = (z, r, u) = (
∏`
i=1 z

ωi
i ,
∏`
i=1 r

ωi
i ,
∏`
i=1 u

ωi
i ).

Verify(pk, σ, (M1, . . . ,Mn)): given a signature σ = (z, r, u) ∈ G3 and a vec-
tor (M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and
(z, r, u) satisfy the equalities 1GT

= e(gz, z) · e(gr, r) ·
∏n
i=1 e(gi,Mi) and

1GT
= e(hz, z) · e(hu, u) ·

∏n
i=1 e(hi,Mi).

One particularity of this scheme is that, even if the private key is available,
it is difficult to find two distinct signatures on the same vector if the SDP as-
sumption holds: by dividing out the two signatures, one obtains the solution of
an SDP instance (gz, gr, hz, hu) contained in the public key.

Two constructions of full-fledged (as opposed to one-time) linearly homomor-
phic SPS were given in [28]. One of these will serve as a basis for our proof system.
In these constructions, all algorithms additionally input a tag which identifies
the dataset that vectors belongs to. Importantly, only vectors associated with
the same tag can be homomorphically combined.

3 Unbounded Simulation-Sound Quasi-Adaptive NIZK
Arguments

In the following, vectors are always considered as row vectors unless stated oth-
erwise. If A ∈ Zt×np is a matrix, we denote by gA ∈ Gt×n the matrix obtained
by exponentiating g using the entries of A.

We consider public parameters Γ = (G,GT , g) consisting of bilinear groups
(G,GT ) with a generator g ∈ G. Like [24], we will consider languages Lρ =
{gx·A ∈ Gn | x ∈ Ztp} that are parametrized by ρ = gA ∈ Gt×n, where A ∈ Zt×nq

is a t× n matrix of rank t < n.
As in [24], we assume that the distribution DΓ is efficiently samplable: there

exists a PPT algorithm which outputs a pair (ρ,A) describing a relation Rρ and
its associated language Lρ according to DΓ . One example of such a distribution

is obtained by picking a uniform matrix A R← Zt×np – which has full rank with

overwhelming probability – and setting ρ = gA.
Our construction builds on the homomorphic signature recalled in Section

2.5. Specifically, the language-dependent CRS ψ contains one-time linearly ho-
momorphic signatures on the rows of the matrix ρ ∈ Gt×n. For each vector
v ∈ Lρ, the prover can use the witness x ∈ Ztp to derive and prove knowledge
of a one-time homomorphic signature (z, r, u) on v. This signature (z, r, u) is

9



already a QA-NIZK proof of membership but it is not simulation-sound. To ac-
quire this property, we follow [30] and generate a NIWI proof of knowledge of
(z, r, u) for a Groth-Sahai CRS that depends on the verification key of an ordi-
nary one-time signature. The latter’s private key is used to sign the NIWI proof
so as to prevent unwanted proof manipulations. Using the private key of the ho-
momorphic one-time signature as a trapdoor, the simulator is also able to create
proofs for vectors v 6∈ Lρ. Due to the use of perfectly NIWI proofs, these fake
proofs do not leak any more information about the simulation key than the CRS
does. At the same time, the CRS can be prepared in such a way that, with non-
negligible probability, it becomes perfectly binding on an adversarially-generated
proof, which allows extracting a non-trivial signature on a vector v 6∈ Lρ.

Like [24], our quasi-adaptive NIZK proof system (K0,K1,P,V) is a split CRS
construction in that K1 can be divided into two algorithms (K10,K11). The first
one K10 outputs some state information s and a first CRS CRS2 which is only
used by the verifier and does not depend on the language Lρ. The second part
K11 of K1 inputs the state information s and the output of Γ of K0 and outputs
CRS1 which is only used by the prover. The construction goes as follows.

K0(λ): choose groups (G,GT ) of prime order p > 2λ with g R← G. Then, output
Γ = (G,GT , g)

The dimensions (t, n) of the matrix A ∈ Zt×np can be either fixed or part of the
language, so that t, n can be given as input to the CRS generation algorithm K1.

K1(Γ, ρ): parse Γ as (G,GT , g) and ρ as a matrix ρ =
(
Gi,j

)
1≤i≤t, 1≤j≤n ∈ Gt×n.

1. Generate a key pair (pkots, skots) for the homomorphic signature of Sec-
tion 2.5 in order to sign vectors of Gn and incorporate a set of Groth-
Sahai common reference strings in the public key pkots. In details:

a. Choose gz, gr, hz, hu
R← G. For i = 1 to n, pick χi, γi, δi

R← Zp and

compute gi = gz
χigr

γi and hi = hz
χihu

δi .
b. Generate L + 1 Groth-Sahai CRSes, for some L ∈ poly(λ). To this

end, choose f1, f2
R← G and define vectors f1 = (f1, 1, g) ∈ G3,

f2 = (1, f2, g) ∈ G3. Then, pick f3,i
R← G3 for i = 0 to L.

Let skots = {(χi, γi, δi)}ni=1 be the private key and the public key is

pkots =
(
gz, gr, hz, hu, {(gi, hi)}ni=1, f =

(
f1,f2, {f3,i}Li=0

) )
.

2. Use skots to generate one-time homomorphic signatures {(zi, ri, ui)}ti=1

on the rows ρi = (Gi1, . . . , Gin) ∈ Gn of ρ. These are obtained as

(zi, ri, ui) =
(∏n

j=1G
−χj

i,j ,
∏n
j=1G

−γj
i,j ,

∏n
j=1G

−δj
i,j

)
for all i ∈ {1, . . . , t}.

3. Choose a strongly unforgeable one-time signature Σ = (G,S,V) with
verification keys consisting of L-bit strings.

4. The CRS ψ = (CRS1,CRS2) consists of two parts which are defined as

CRS1 =
(
ρ, pkots, {(zi, ri, ui)}ti=1, Σ

)
, CRS2 =

(
pkots, Σ

)
,

10



while the simulation trapdoor τsim is skots = {(χi, γi, δi)}ni=1.

P(Γ, ψ,v, x, lbl): given v ∈ Gn and a witness x = (x1, . . . , xt) ∈ Ztp such that

v = gx·A, generate a one-time signature key pair (SVK,SSK)← G(λ).

1. Using {(zj , rj , uj)}tj=1, derive a one-time linearly homomorphic signature

(z, r, u) on v. Namely, set z =
∏t
i=1 z

xi
i , r =

∏t
i=1 r

xi
i and u =

∏t
i=1 u

xi
i .

2. Using SVK ∈ {0, 1}L, define the vector fSVK = f3,0 ·
∏L
i=1 f

SVK[i]
3,i and

assemble a Groth-Sahai CRS fSVK = (f1,f2,fSVK). Using fSVK, generate
commitmentsCz,Cr,Cu to the components of (z, r, u) along with NIWI
proofs (π1,π2) that (z, r, u) is a valid homomorphic signature for v.
Let (Cz,Cr,Cu,π1,π2) ∈ G15 be the resulting commitments and proofs.

3. Generate σ = S(SSK, (v,Cz,Cr,Cu,π1,π2, lbl)) and output

π = (SVK,Cz,Cr,Cu,π1,π2, σ) (1)

V(Γ, ψ,v, π, lbl): parse π as per (1). Return 1 if (i) (Cz,Cr,Cu,π1,π2) forms
a valid NIWI proof for the Groth-Sahai CRS fSVK = (f1,f2,fSVK); (ii)
V(SVK, (v,Cz,Cr,Cu,π1,π2, lbl), σ) = 1. If either condition fails to hold,
return 0.

In order to simulate a proof for a given vector v ∈ Gn, the simulator uses
τsim = skots to generate a fresh one-time homomorphic signature on v ∈ Gn and
proceeds as in steps 2-3 of algorithm P.

The proof π only consists of 15 group elements and a one-time pair (SVK, σ).
Remarkably, its length does not depend on the number of equations n or the
number of variables t. In comparison, Groth-Sahai proofs already require 3t+2n
group elements in their basic form and become even more expensive when it
comes to achieve unbounded simulation-soundness. The Jutla-Roy techniques
[24] reduce the proof length to 2(n− t) elements – which only competes with our
proofs when t ≈ n – but it is unclear how to extend them to get unbounded
simulation-soundness without affecting their efficiency. Our CRS consists of
O(t+ n+ L) group elements against O(t(n− t)) in [24].

Interestingly, the above scheme even outperforms Fiat-Shamir-like proofs de-
rived from Σ-protocols which would give O(t)-size proofs here. The construction
readily extends to rely on the k-linear assumption for k > 2. In this case, the
proof comprises (k + 1)(2k + 1) elements and its size thus only depends on k.

The verification algorithm only involves linear pairing product equations
whereas all known unbounded simulation-sound extensions of GS proofs require
either quadratic equations or a linearization step involving extra variables.

We finally remark that, if we give up the simulation-soundness property, the
proof length drops to k + 1 group elements under the k-linear assumption.

Theorem 1. The scheme is an unbounded simulation-sound QA-NIZK proof
system if the DLIN assumption holds in G and Σ is strongly unforgeable. (The
proof is given in the full version of the paper [29]).

We note that the above construction is not tightly secure as the gap between
the simulation-soundness adversary’s advantage and the probability to break
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the DLIN assumption depends on the number of simulated proofs obtained by
the adversary. For applications like tightly secure public-key encryption [22], it
would be interesting to modify the proof system to obtain tight security.

4 Single-Theorem Relatively Sound Quasi-Adaptive
NIZK Arguments

In applications where single-theorem relatively sound NIZK proofs suffice, we can
further improve the efficiency. Under the k-linear assumption, the proof length
reduces from O(k2) elements to O(k) elements. Under the DLIN assumption,
each proof fits within 4 elements and only costs 2n + 6 pairings to verify. In
comparison, the verifier needs 2(n− t)(t+ 2) pairing evaluations in [24].

As in [23], we achieve relative soundness using smooth projective hash func-
tions [13]. To this end, we encode the matrix ρ ∈ Gt×n as a 2t× (2n+ 1) matrix.

K0(λ): choose groups (G,GT ) of prime order p > 2λ with g R← G. Then, output
Γ = (G,GT , g).

Again, the dimensions of A ∈ Zt×np can be either fixed or part of Lρ, so that t, n
can be given as input to the CRS generation algorithm K1.

K1(Γ, ρ): parse Γ as (G,GT , g) and ρ as ρ =
(
Gij
)
1≤i≤t, 1≤j≤n ∈ Gt×n.

1. Choose vectors d = (d1, . . . , dn) R← Znp and e = (e1, . . . , en) R← Znp . Define

W = (W1, . . . ,Wt) = gA·d
> ∈ Gt and Y = (Y1, . . . , Yt) = gA·e

> ∈ Gt,
which will be used to define a projective hash function.

2. Generate a key pair for the one-time homomorphic signature of Section
2.5 in order to sign vectors in G2n+1. Let skots = {(χi, γi, δi)}2n+1

i=1 be
the private key and let pkots =

(
(G,GT ), gz, gr, hz, hu, {(gi, hi)}2n+1

i=1

)
be

the corresponding public key.
3. Use skots to generate one-time homomorphic signatures {(zi, ri, ui)}2ti=1

on the independent vectors below, which are obtained from the rows of
the matrix ρ =

(
Gi,j

)
1≤i≤t, 1≤j≤n.

H2i−1 = (Gi,1, . . . , Gi,n, Yi, 1 , . . . , 1 ) ∈ G2n+1 i ∈ {1, . . . , t}
H2i = (1 , . . . , 1 ,Wi, Gi,1, . . . , Gi,n) ∈ G2n+1

4. Choose a collision-resistant hash function H : {0, 1}∗ → Zp.
5. The CRS ψ = (CRS1,CRS2) consists of a first part CRS1 that is only

used by the prover and a second part CRS2 which is only used by the
verifier. These are defined as CRS2 =

(
pkots,W ,Y , H

)
and

CRS1 =
(
ρ, pkots,W ,Y , {(zi, ri, ui)}2ti=1, H

)
.

The simulation trapdoor τsim is skots and the private verification trap-
door is τv = {d, e}.
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P(Γ, ψ,v, x, lbl): given v ∈ Gn, a witness x = (x1, . . . , xt) ∈ Ztp such that

v = gx·A and a label lbl, compute α = H(ρ,v, lbl) ∈ Zp. Then, using
{(zi, ri, ui)}2ti=1, derive a one-time homomorphic signature (z, r, u) on the
vector ṽ =

(
v1, . . . , vn, π0, v

α
1 , . . . , v

α
n

)
∈ G2n+1, where π0 =

∏t
i=1(Wα

i Yi)
xi .

Namely, output π = (z, r, u, π0) ∈ G4, where z =
∏t
i=1(z2i−1 · zα2i)xi ,

r =
∏t
i=1(r2i−1 · rα2i)xi , u =

∏t
i=1(u2i−1 · uα2i)xi and π0 =

∏t
i=1(Wα

i Yi)
xi .

V(Γ, ψ,v, π, lbl): parse v as (v1, . . . , vn) ∈ Gn and π as (z, r, u, π0) ∈ G4. Com-
pute α = H(ρ,v, lbl) and return 1 if and only if (z, r, u) is a valid signature
on ṽ = (v1, . . . , vn, π0, v

α
1 , . . . , v

α
n) ∈ G2n+1. Namely, it should satisfy the

equalities 1GT
= e(gz, z) · e(gr, r) ·

∏n
i=1 e(gi · gαi+n+1, vi) · e(gn+1, π0) and

1GT
= e(hz, z) · e(hu, u) ·

∏n
i=1 e(hi · hαi+n+1, vi) · e(hn+1, π0).

W(Γ, ψ, τv,v, π, lbl): given v = (v1, . . . , vn) ∈ Gn, parse π as (z, r, u, π0) ∈ G4

and τv as {d, e}, with d = (d1, . . . , dn) ∈ Znp and e = (e1, . . . , en) ∈ Znp .
Compute α = H(ρ,v, lbl) ∈ Zp and return 0 if the public verification test V

fails. Otherwise, return 1 if π0 =
∏n
j=1 v

ej+αdj
j and 0 otherwise.

We note that, while the proving algorithm is deterministic, each statement has
many valid proofs. However, finding two valid proofs for the same statement is
computationally hard, as will be shown in the proof of Theorem 2.

The scheme readily extends to rest on the k-linear assumption with k > 2.
In this case, the proof requires k + 2 group elements – whereas combining the
techniques of [23, 24] demands k(n + 1 − t) elements per proof – and a CRS of
size O(k(n+ t)). We prove the following result in the full version of the paper.

Theorem 2. The above proof system is a relatively sound QA-NIZK proof sys-
tem if the SDP assumption holds in (G,GT ) and if H is a collision-resistant
hash function.

As an application, we describe a new adaptively secure CCA2-secure non-
interactive threshold cryptosystem based on the DLIN assumption in the full
version of the paper. Under the k-linear assumption, the scheme provides cipher-
texts that are Θ(k) group elements shorter than in previous such constructions.
Under the DLIN assumption, ciphertexts consist of 8 elements of G, which spares
one group element w.r.t. the best previous variants [23, 24] of Cramer-Shoup with
publicly verifiable ciphertexts.

5 An Efficient Threshold Keyed-Homomorphic
KH-CCA-Secure Encryption Scheme from the DLIN
Assumption

The use of linearly homomorphic signatures as publicly verifiable proofs of ci-
phertext validity in the Cramer-Shoup paradigm [12, 13] was suggested in [28].
However, the latter work only discusses non-adaptive (i.e., CCA1) attacks. In
the CCA2 case, a natural idea is to proceed as in our unbounded simulation-
sound proof system and use the verification key of a on-time signature as the
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tag of a homomorphic signature: since cross-tag homomorphic operations are
disallowed, the one-time signature will prevent illegal ciphertext manipulations
after the challenge phase. To obtain the desired keyed-homomorphic property,
we use the simulation trapdoor of a simulation-sound proof system as the ho-
momorphic evaluation key. This approach was already used by Emura et al. [16]
in the context of designated verifier proofs. Here, publicly verifiable proofs are
obtained from a homomorphic signature scheme of which the private key serves
as an evaluation key: anyone equipped with this key can multiply two cipher-
texts (or, more precisely, their built-in homomorphic components), generate a
new tag and sign the resulting ciphertext using the private key of the homomor-
phic signature. Moreover, we can leverage the fact that the latter private key
is always available to the reduction in the security proof of the homomorphic
signature [28]. In the game of Definition 1, the simulator can thus hand over the
evaluation key SKh to the adversary upon request.

Emura et al. [16] gave constructions of KH-CCA secure schemes based on
hash proof systems [13]. However, these constructions are only known to provide
a relaxed flavor of KH-CCA security where evaluation queries should not in-
volve derivatives of the challenge ciphertext. The reason is that 2-universal hash
proof systems [13] only provide a form of one-time simulation soundness whereas
the model of Definition 1 seemingly requires unbounded simulation-soundness.
Indeed, when the evaluation oracle is queried on input of a derivative of the chal-
lenge ciphertext in the security proof, the homomorphic operation may result in
a ciphertext containing a vector outside the language Lρ. Since the oracle has to
simulate a proof for this vector, each homomorphic evaluation can carry a proof
for a potentially false statement. In some sense, each output of the evaluation
oracle can be seen as yet another challenge ciphertext. In this setting, our effi-
cient unbounded simulation-sound QA-NIZK proof system comes in handy.

It remains to make sure that CCA1 security is always preserved, should the
adversary obtain the evaluation key SKh at the outset of the game. To this end,
we include a second derived one-time homomorphic signature (Z,R,U) in the
ciphertext without including its private key in SKh.

Keygen(λ, t,N): Choose bilinear groups (G,GT ) of prime order p > 2λ.

1. Pick f, g, h R← G, x0, x1, x2
R← Zp and set X1 = fx1gx0 , X2 = hx2gx0 .

Then, define f = (f, 1, g) ∈ G3 and h = (1, h, g) ∈ G3.

2. Pick random polynomials P1[Z], P2[Z], P [Z] ∈ Zp[Z] of degree t−1 such
that P1(0) = x1, P2(0) = x2 and P (0) = x0. For each i ∈ {1, . . . , N},
compute V Ki = (Yi,1, Yi,2) where Yi,1 = fP1(i)gP (i) and Yi,2 = hP2(i)gP (i).

3. Choose fr,1, fr,2
R← G and define fr,1 = (fr,1, 1, g), fr,2 = (1, fr,2, g) and

fr,3 = fφ1

r,1 · f
φ2

r,2 · (1, 1, g)−1, where φ1, φ2
R← Zp. These vectors will be

used as a Groth-Sahai CRS for the generation of NIZK proofs showing
the validity of decryption shares.

4. Choose a strongly unforgeable one-time signature Σ = (G,S,V) with
verification keys consisting of L-bit strings, for some L ∈ poly(λ).

14



5. Generate a key pair for the one-time homomorphic signature of Section
2.5 with n = 3. Let pkot =

(
Gz, Gr, Hz, Hu, {(Gi, Hi)}3i=1

)
be the public

key and let skot = {(ϕi, ϑi, $i)}3i=1 be the corresponding private key.
6. Generate one-time homomorphic signatures {(Zj , Rj , Uj)}j=1,2 on the

vectors f = (f, 1, g) and h = (1, h, g) and erase skot.
7. Generate another linearly homomorphic key pair (pk, sk) with n = 3. The

public key pk is augmented so as to contain a set of Groth-Sahai CRSes
as in step 1 of the proof system in Section 3. Let sk = {(χi, γi, δi)}3i=1

be the private key for which the corresponding public key is

pk =
(
gz, gr, hz, hu, {(gi, hi)}3i=1, f =

(
f1,f2, {f3,i}Li=0

) )
.

8. Use sk to generate one-time homomorphic signatures {(zj , rj , uj)}j=1,2

on the independent vectors f = (f, 1, g) ∈ G3 and h = (1, h, g) ∈ G3.
9. The public key is defined to be

PK =
(
g, f , h, fr,1, fr,2, fr,3, X1, X2,

pkot, pk, {(Zj , Rj , Uj)}2j=1, {(zj , rj , uj)}2j=1

)
.

The evaluation key is SKh = sk = {(χi, γi, δi)}3i=1 while the i-th de-
cryption key share is defined to be SKd,i = (P1(i), P2(i), P (i)). The
vector of verification keys is defined as VK = (V K1, . . . , V KN ), where
V Ki = (Yi,1, Yi,2) for i = 1 to N .

Encrypt(M,PK): to encrypt M ∈ G, generate a one-time signature key pair
(SVK,SSK)← G(λ).

1. Set (C0, C1, C2, C3) = (M ·Xθ1
1 ·X

θ2
2 , f

θ1 , hθ2 , gθ1+θ2), with θ1, θ2
R← Zp.

2. Compute a first homomorphic signature (Z,R,U) on (C1, C2, C3) ∈ G3.
Namely, compute Z = Zθ11 · Z

θ2
2 , R = Rθ11 ·R

θ2
2 and U = Uθ11 · U

θ2
2 .

3. Using {(zj , rj , uj)}j=1,2, derive another homomorphic signature (z, r, u)

on (C1, C2, C3). Namely, compute (z, r, u) = (zθ11 · z
θ2
2 , r

θ1
1 · r

θ2
2 , u

θ1
1 ·u

θ2
2 ).

4. Using SVK ∈ {0, 1}L, define the vector fSVK = f3,0 ·
∏L
i=1 f

SVK[i]
3,i and

assemble a Groth-Sahai CRS fSVK = (f1,f2,fSVK). Using fSVK, generate
commitments Cz, Cr, Cu to the components of (z, r, u) ∈ G3 along with
proofs (π1,π2) as in step 2 of the proving algorithm of Section 3. Let
(Cz,Cr,Cu,π1,π2) ∈ G15 be the resulting NIWI proof.

5. Generate σ = S(SSK, (C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2)) and
output

C = (SVK, C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2, σ) (2)

Ciphertext-Verify
(
PK,C

)
: parse C as in (2). Return 1 if and only if: (i)

V(SVK, (C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2), σ) = 1; (ii) (Z,R,U) is
a valid homomorphic signature on (C1, C2, C3); (iii) (Cz,Cr,Cu,π1,π2) ∈
G15 is a valid proof w.r.t. the CRS (f1,f2,fSVK) that committed (z, r, u)
form a valid homomorphic signature for the vector (C1, C2, C3) ∈ G3. Here,

we define fSVK = f3,0 ·
∏L
i=1 f

SVK[i]
3,i .
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Share-Decrypt(PK, i, SKd,i, C): on inputs SKd,i = (P1(i), P2(i), P (i)) ∈ Z3
p

and C, return (i,⊥) if Ciphertext-Verify
(
PK,C

)
= 0. Otherwise, com-

pute µ̂i =
(
νi,CP1 ,CP2 ,CP , πµi

)
which consists of a partial decryption

νi = C
P1(i)
1 · CP2(i)

2 · CP (i)
3 as well as commitments CP1

,CP2
,CP to expo-

nents P1(i), P2(i), P (i) ∈ Zp and a proof πνi that these satisfy the equations

νi = C
P1(i)
1 · CP2(i)

2 · CP (i)
3 , Yi,1 = fP1(i)gP (i), Yi,2 = hP2(i)gP (i).

The commitments CP1
,CP2

,CP and the proof πνi are generated using the
CRS (fr,1,fr,2,fr,3). Then, return µi = (i, µ̂i).

Share-Verify
(
PK, V Ki, C, (i, µ̂i)

)
: parse C as in (2) and V Ki as (Yi,1, Yi,2). If

µ̂i = ⊥ or µ̂i cannot be parsed as
(
νi,CP1

,CP2
,CP , πµi

)
, return 0. Other-

wise, return 1 if and only if πµi
is valid.

Combine(PK,VK, C, {(i, µ̂i)}i∈S): for each index i ∈ S, parse the share µ̂i as(
νi,CP1

,CP2
,CP , πµi

)
and return ⊥ if Share-Verify

(
PK,C, (i, µ̂i)

)
= 0.

Otherwise, compute ν =
∏
i∈S ν

∆i,S(0)
i = Cx1

1 · C
x2
2 · C

x0
3 = Xθ1

1 · X
θ2
2 and

output M = C0/ν.

Eval(PK,SKh, C
(1), C(2)): parse SKh as {(χi, γi, δi)}3i=1. For each j ∈ {1, 2},

parse C(j) as

(SVK(j), C
(j)
0 , C

(j)
1 , C

(j)
2 , C

(j)
3 , Z(j), R(j), U (j),C(j)

z ,C(j)
r ,C(j)

u ,π
(j)
1 ,π

(j)
2 , σ(j))

and return ⊥ if either C(1) or C(2) is invalid. Otherwise,

1. Compute C0 =
∏2
j=1 C

(j)
0 , C1 =

∏2
j=1 C

(j)
1 , C2 =

∏2
j=1 C

(j)
2 and C3 =∏2

j=1 C
(j)
3 as well as Z =

∏2
j=1 Z

(j), R =
∏2
j=1R

(j) and U =
∏2
j=1 U

(j).
2. Generate a new one-time signature key pair (SVK,SSK) ← G(λ). Using
SKh = {(χi, γi, δi)}3i=1, generate proof elements Cz,Cr,Cu,π1,π2 on
the vector (C1, C2, C3) using the simulator of the proof system in Section
3 with the one-time verification key SVK.

3. Return C = (SVK, C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2, σ) where
σ = S(SSK, (C0, C1, C2, C3, Z,R, U,Cz,Cr,Cu,π1,π2)).

In the full version of the paper [29], we prove the KH-CCA security of the scheme
assuming that Σ is a strongly unforgeable one-time signature and that the DLIN
assumption holds in G.

In some applications, it may be desirable to add an extra randomization step
to the evaluation algorithm in order to make sure that derived ciphertexts will
be indistinguishable from freshly generated encryption (similarly to [34]). It is
straightforward to modify the scheme to obtain this property.

If the scheme is instantiated using Groth’s one-time signature [20], the ci-
phertext consists of 25 elements of G and two elements of Zp. It is interesting
to compare the above system with an instantiation of the same design princi-
ple using the best known Groth-Sahai-based unbounded simulation-sound proof
[9][Appendix A.2], which requires 65 group elements in this specific case. With
this proof system, we end up with 77 group elements per ciphertexts under the
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DLIN assumption (assuming that an element of Zp has the same length as the
representation of a group element). The above realization thus saves 50 group
elements and compresses ciphertexts to 35% of their original length.
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